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Section 1: Generalisation and Data Noise (50 Total Points)

In the lectures, we explored several aspects of the generalisation bound. One simple variant we discussed
is that of a finite hypothesis class, where it was shown that the generalisation gap can upper-bounded
by a quantity scaling with O(1/ VN ) many samples. However, this requires the independent samples to
follow the true distribution. Inspired by the discussions and questions given by students in that lecture,
we will consider a very simple methocﬂ of adapting the uniform bound for a finite hypothesis class in the
presence of noise.

Setup. Let us set up the scene. Suppose we are interested in the classification of inputs X to classes
Y, with corresponding distribution D and corresponding joint probability density function p. We also
consider the random variables of input and output classes given by the distribution (X,Y) ~ D.

Define a hypothesis class H as a set of classifiers of the form f : X — ). The objective of learning is
to find the best possible f € H, where “best” means the classifier that gives us the lowest risk based on
some loss function ¢ : Y x Y — R. Recall from the lectures that there are two ways we can aggregate the
loss: either using the theoretical distribution D to get the true risk, or using the empirical distribution
(through an i.i.d. dataset) to get the empirical risk. The following definition will make it clearer.

Definition 1 (RiskE[). The (true) risk of a classifier f : X — Y with respect to (w.r.t.) a distribution D
on X x Y and loss function £: Y x Y — R is given by

Rop(fle E [0(f(X),Y)]; (1.1)
(X,Y)~D

and the empirical risk w.r.t. samples S ~ DV is given by

~

N
Rslfl® B [HF(0.V)] = 5 Do m) (12)
i=1

(X,Y)~S

Remark. Note the slight difference in notation from lectures. The empirical risk is denoted by a hat
Raolf] and each type of risk has an explicit subscript to denote what distribution we are considering.
This is so we can compare the true risk and empirical risk for different distributions.

From the lecture, we know that the the difference between these two types of risk — also called the
generalisation gap — is important. It determines how close we can get to the true risk given only a finite
amount of data. We also know in the lecture that this gap can be bounded no matter what classifier f
we choose, using the two-sided Hoeffding’s inequality (see Proposition |1| in Appendix . You may use
this result without proof later.

Assumption: For the rest of this section, we will make two assumptions. First, the hypothesis class
H is finite and contains |H| classifiers. Second, the loss function ¢ is bounded between 0 and 1 on its
domain—that is, for any y,y’ € Y,

0<{y,y) <1 (1.3)

General noise. To consider the effects data noise has on our generalisation bounds, we will consider two
different distributions: (1) a clean distribution which we want to learn from; and (2) a noisy distribution
which can cause problems in learning. For example, we consider a noisy distribution Dasa noisy version
of D. The “tilde” O symbol is used to indicate noisy variants of object we have already introduced. Table
in Appendix [A] summarises the differences.

In this general setup, we have a natural question about the effect of noise: how close can we get to the
true risk if we only have a noisy sample of data? Or mathematically, can the generalisation gap when we
have noisy data, defined as

Anoise,g;ap [.ﬂ def |R'D [f] - ﬁg[.ﬂ |7 (14)

be bounded? To answer this, let us first examine the difference between the true risk of clean distribution
and that of the noisy version.

IThere are more slick bounds available if we use more sophisticated frameworks, i.e., PAC-Bayes.
2Technically, the co-domain of the classifier does not need to match that of the output space. However, we simplify to
this case for convenience of notation.



Question 1.1: Noise and True Risk (10 Points)
Let f € H with a bounded loss function (as per Eq. (1.3)). Prove that

IRp[f] = Rp[fll < Drv(p,p), (1.5)

where p, p are the density functions of D, 15, respectively; and

DTv@xﬁ>%f//1p@ay>—iXxﬂn|dxdy. (16)

The integral term in Eq. ([1.6)) is actually a well known distance function called the total variation distance.
One nice characteristic of this distance is that it is (polynomially) upper-bounded by the KL—divergencdﬂ

A hint for later: The integral in Eq. (1.6)) can be simplified to a “summation” if we are considering a
countable domain, i.e., a classification task with finite ).

Thus putting everything together, let us establish a uniform bound for the noisy sample gap (given by
Eq. (1.4)) for a finite hypothesis class H.

Question 1.2: Uniform Bound for Noisy Sample Gap (15 Points)
Let H be a finite hypothesis class. Prove that given a finite sample S ~ DY, for § > 0

Pr{erH:|Rp[f]—7€§[f]|gDTv(p,5)+ W]\W}z1_5. (1.7)

Hint: Use the triangle inequality. Then reuse the result in Question to find an upper bound
for the left-hand distance above. Finally use Proposition [1| to derive the bound and change € to ¢

to get Eq. (1.7)).

Question 1.3: Interpreting the Uniform Bound for Noisy Sample Gap (10 Points)

Compare Eq. ([1.7) with the bound we found in the lecture in the absence of noisy data, namely,
for any § > 0,

m%mww%m—mmm mH}WW%zM&

What is the effect of noisy data on the generalisation bound and the rate at which it decreases
with the number of data points?

\ J

Label noise. Now that we have a “general” bound for different noises, let us specialise the bound for label
noise. In particular, for the next couple questions we will consider label noise for binary classification,
where Y = {—1,+1}. Simply, label noise can be summarised the case where class labels used to train
have a chance of being incorrect.

Definition 2 ((Asymmetric) Label Noise). Let (X,Y) ~ D be a data distribution. Given label flipping
probabilities o_1,041 € [0, 1], the corresponding noisy distribution under (asymmetric) label noise is the
distribution (X,Y) ~ D in which noisy random variables X,Y satisfy the following properties:

(LN1): Label flipping probability Pr(Y = —y | Y =) = oy for all y € V;
(LN2): Identical input marginals Pr(X = z) = Pr(X = z) for all z € X;

(LN3): Conditional independence ¥ 1. X | Y.

3Pinsker’s Inequality gives for every probability distribution p,q on X x V: Dv(p, q) < ,/%DKL (p, q)-



Symmetric label noise is the noise model when 0 =o0_1 = 041.

Given the definition of asymmetric label noise, we can calculate certain posterior probability quantities
which are more intuitive. For instance, one can summarise Definition [2 by considering the noise posterior
Pr(Y | X).

Question 1.4: Noisy Posterior for Label Noise (5 Points)

Given a clean distribution D and a noisy version of the distribution D under asymmetric label
noise with flipping probabilities o_1,041 € [0, 1], show that for all y €

Pr(Y =y | X)=0_, - (1=Pr(Y =y | X))+ (1 —0,) - Pr(Y = y | X). (1.8)

Using Eq. (1.8) we can simply adapt the uniform bound given in the general case for label noise. In
particular, we will look at the symmetric label noise version of the bound.

Question 1.5: Uniform Bound for Symmetric Label Noise (10 Points)

Suppose that a noisy distribution D is given by symmetric label noise, with flipping o € [0, 1],
applied to clean distribution D. Prove that given a finite sample S ~ DV, for § > 0

Pr {Vf €H :|Roplf] —ﬁg[f“ <20+ WJ\M} >1-4. (1.9)

Hint: Start by bounding |Rp[f] — Rz[f]| like in Question Then reuse the technique in
Question [T:2]

Remark. In Eq. (1.9), we can see that the noise term o is linear in ¢: Thus the noise is maximally
harmful with ¢ =1 and vanishes when o = 0.



Section 2: Gaussian Processes and Bayesian Optimisation (50 Total Points)

Gaussian Processes. For reference, we have defined the key concepts and notations of a Gaussian
Process in Appendix

Gaussian Process Regression. Having defined the prior and the joint distributions (check Ap-
pendix , we are now in position to define the Gaussian Process predictive distribution as,

f. | X,y, X. ~ N(f., cov(f.)) (2.1)
where we have,
£ E[f | Xy, X.] = KK,y (2.2a)
cov(f,) = Ko — K/ K 'K, (2.2b)
If we have only a single point to predict, the above equations simplify to,
fo=kIK/ 'y (2.32)
V(fe) = kuw — k! K 'k, (2.3b)

Depending on our choice of the covariance function, we would have to choose its parameters as well. This
choice must be diligent, otherwise we will have trouble predicting new points with high confidence. It
would be ideal to have a field expert for every exact problem we are trying to solve to inform us of the
underlying parameters of the model, but this isn’t always possible. In those cases, we have to treat those
covariance function parameters as hyperparameters, which we denote as @, and optimise them in our
algorithm. There are many ways to achieve this hyperparameter optimisation, but here we will maximise
the log marginal likelihood with respect to those parameters 8, with the log marginal likelihood defined
as,

1 _ 1 n
logp(y | X,0) = —inKy ly — 3 log | Ky | — 5 log 2. (2.4)

Now, as you have noticed we are required many times to compute the inverse of the training covariance
matrix, Ky L. Taking the inverse straight away would be a highly inefficient and numerically unstable
way, especially as the training dataset grows. So, instead we should use a more appropriate method
by utilising techniques from matrix factorisation theory. More specifically, we will perform Cholesky
factorisation on the training covariance matrix. An analytical implementation of the steps to implement
this decomposition is given in Algorithm Note the backslash notation A\b is the vector x which solves
Ax =Db.

Algorithm 1 Efficient Gaussian Process Regression

1: L < cholesky(Ky) > Cholesky factorisation for predictions and log marginal likelihood
2 a+ LT\(L\y)

3 fo k!l > predictive mean Eq.
4: V < L\k*

5 V(f) ¢ ks — V'V > predictive variance Eq. [2.3
6: logp(y|X) «+ f%yTa — > ;log Lj; — 5 log 27 > log marginal likelihood Eq.

Choice of Covariance. As we discussed before, the choice of covariance plays an important factor in the
success of a GP regression. For this assignment, we will consider a general class of Covariance functions,
called Matérn. This class is defined mathematically as,

kMatcrn(x;y) = 217” (md> KV (md> (25)

TI'(v) L l
with positive parameters v and ¢. K, is a modified Bessel function and d = dist(z, y) denotes the pairwise

Euclidean distance.

We can easily observe that when v — oo, we obtain the well-known Radial Basis function (RBF).
Therefore, this class of covariance functions is a generalisation of the RBF class. However, RBF can be


https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_I%CE%B1,_K%CE%B1

too smooth sometimes and this is not always appropriate in a machine learning setting. For machine
learning solutions, we usually tend to use two other covariance functions. Matérn32 and Matérn52, when
v = 3/2 and v = 5/2 respectfully. Matérn32 covariance function works for single-differentiable functions,
whereas Matérn52 could work for up to twice-differentiable functions. In general, a Gaussian process with
Matérn covariance is [v] — 1 times differentiable in the mean-square sense.

The two covariance functions are defined below as,

d d
ky—3/2(x,y) = o’? . (1 + \/§> exp <—\/§> — In Matérn32 case (2.6a)

L
d d? d
ky—s/a(z,y) = UJ% . (1 + \[75 + E?iﬁ) exp (_\/€5> — In Matérn52 case (2.6b)
with UJ% being the signal variance.
Question 2.1: Matérn Class Covariance Functions (5 Points)

Implement the Matérn32 and Matérn52 covariance functions (__call__()) under the FIXME sec-
tions in kernels.py.

You should use the Equations [2.6a] and [2.6b] for your implementation.

Question 2.2: Gaussian Process Regression (15 Points)

Implement the optimisation(), fit(), predict(), and log_marginal_likelihood() functions
under the respective FIXME sections in gp.py.

You should use Algorithm [T} where appropriate for your implementation.

J

Bayesian Optimisation - Intuition. Bayesian Optimisation (BayesOpt) is a zeroth-order optimisation
method of finding the maximum of expensive cost functions. BayesOpt employs Bayesian techniques of
setting a prior over the objective function and combining it with evidence to get a posterior function. This
permits a utility-based selection of the next observation to make on the objective function, which must
take into account both exploration (sampling from areas of high uncertainty) and exploitation (sampling
areas likely to offer improvement over the current best observation). More specifically, it builds a surrogate
model for the objective and quantifies the uncertainty in that surrogate using Gaussian process regression,
and then uses an acquisition function defined from this surrogate to decide where to sample. We will define
all those terms later.

Let’s assume we want to solve the following optimisation problem

max f(x). (2.7)

zeX

The function defined in also has the following important properties:

e The objective function f is L-Lipschitz-continuous in order to use Gaussian process regression.

e f is expensive to evaluate, either in the sense of time or money or other factors that will result in
hurdles along the way.

e f lacks known special structure, such as convexity or quasi-convexity (similarly with concavity) to
allow us to use known gradient-based optimisation algorithms. We say that f is a black-box in those
cases.

Finally, our focus in on finding a global rather than local optimum.

Surrogate Model. As we said before, BayesOpt consists of two main components: a Bayesian statistical
model for modelling the objective function, and an acquisition function for deciding where to sample next.



For the surrogate model we will use the Gaussian process regression model that we have implemented
before. Since our evaluation functions will be continuous, a GPR is an ideal surrogate model. In general,
you can read about surrogate models here.

Improvement-based Acquisition Functions. Now, let’s turn over focus on the acquisition functions.
The role of the acquisition function is to guide the search for the optimum. Typically, acquisition functions
are defined such that high acquisition corresponds to potentially high values of the objective function,
whether because the prediction is high, the uncertainty is great, or both. Maximising the acquisition
function is used to select the next point at which to evaluate the function. That is, we wish to sample f
at argmax, u(z | D), where u(-) is the generic symbol for an acquisition function.

There are many types of acquisition functions, but in this assignment we will focus only on improvement-
based acquisition functions. This class of functions is based on the random variable Improvement:

I(x) = max{0, f(x) — f(x") — &}, (2.8)

where f(x") is the incumbent solution and x* = argmax, ., . f(x;). Note that £ > 0 is the exploration-
exploitation trade-off hyperparameter.

Intuitively, I(x) assigns a reward of {f(x) — f(x*)—¢&} if f(x) > f(xT)+¢, and zero otherwise. Therefore,
we should select the point that has the highest probability of improving upon the incumbent function
value f(xT). This effectively means that we should maximise the probability of the event {Pr (I(x) > 0)}
or equivalently maximise the probability of the event {f(x) > f(xT) + £}. Another way of seeing this,
is by taking the expectation of the utility function u(x) = 1{fx)>fx+)4¢}, Which is u(x) = 1 when
f(x) > f(xT) + € and zero otherwise.

A well-known acquisition function is the maximisation of this probability of improvement (PI) over the
f(xT), and is defined as such,

PI(x) = Pr (I(x) > 0)

=1—-Pr (f(x)o(xgt(x) < f(x*) ;(i) MX)) = reparameterisation trick u (2.9)
= a(2),
where N

o(x)
The full derivation can be found in Appendix [B]

Also, ®(-) and ¢(-) is the normal cumulative and probability distribution functions respectively, u(x) is
the mean of f(x), o(x) is the standard deviation of f(x), and ¢ is the exploration-exploitation trade-off
hyperparameter, as before.

However, the solution of the PI acquisition function is greedy as it selects the point most likely to offer
an improvement of at least &.

A somewhat more satisfying alternative acquisition function would be one that takes into account not
only the probability of improvement, but also the magnitude of the improvement a point can potentially
yield. In particular, we want to minimise the expected deviation from the true maximum f(x*), when
choosing a new trial point. This can be formulated mathematically as,

xp41 = argminE[| fi11(x) — £(*)] | D
- (2.11)
= argmin / 1fiir () — SN Pr(fosn | Dret) dfn

In the above definition, we have consider only one step ¢ + 1, and if we want to account for many steps,
we just have to use a recursive procedure with dynamic programming to find the solution. However,
this is expensive, and so we shall propose an alternative procedure. That is to maximise this expected
improvement with respect to f(x1). More specifically, we can re-introduce the improvement (or window
function in stochastic modelling in engineering) from the PI acquisition function.


https://en.wikipedia.org/wiki/Surrogate_model

The new query point is found by maximizing the expected improvement:

X = arginaXE[I(x) | D). (2.12)

Thus, taking the expectation of the random variable 1(x) yields the expected improvement (EI) acquisition
function, defined as follows,

_ +) — i
i _ (40 = F(¢) ~8(2) +0(x)6(2) i a(x) >0, 013
0 ifo(x)=0
where N
7 M(x)—ojzi’; )—=¢ if O'(X) > O, (214)
0 if o(x) = 0.
Question 2.3: Expected Improvement (6 Points)

Derive mathematically the result of the Expected Improvement (EI) acquisition function in Equa-
tion 2:13] That is show that,

(u(x) = f(xF) = O®(2) + o(x)6(Z2)  if o(x) >0,
0 ifo(x) =0

where Z is defined in Equation [2.14

Bayesian Optimisation. To summarise the BayesOpt algorithm can be described in Algorithm [2]

Algorithm 2 Bayesian Optimisation

1: for t=1,2,... do
2 Choose x; by optimising the acquisition function u over the Gaussian Process such that:
3 x; = arg max, u(X | Dy.4—1). > ¥
4: Sample the objective function: y; = f(x:) + €.
5
6:

Augment the data Dy.y = D141 U{(x¢,y:)} and update the GP.
end for

*: Step 3 of Algorithm [2 has been implemented for you in the sample_next_point () function which can
be found in bayesopt.py.

Question 2.4: Acquisition Function (5 Points)

Implement the Probability of Improvement (PI) and Expected Improvement (EI) acquisitions func-
tions under the respective FIXME sections in acquisitions.py. You should use the Equations
(the final result) and for your implementation.

Note: For the coding questions Q2.1, Q2.2, and Q2.4 we have provided a testing suite for you
(tests.py) to validate your implementation before running the whole algorithm in Q2.5. However,
these tests are not complete and passing them won’t necessary mean that you will receive full marks
for these questions. They are here for your guidance and debugging purposes. To test the code, run
the following command:

$ python -m unittest tests




Question 2.5: Bayesian Optimisation (15 Points)

Implement the Bayesian Optimisation algorithm function (__call__()) under the respective
FIXME section in bayesopt.py. You should use Algorithm 2] for your implementation.

Note: The default choices for the exploitation-exploration trade-off hyperparameter &, for the two
acquisition functions, is set to 0.2 for PI and 0.05 for EI respectively. However, given the choice
of the initial points, you will see that the algorithm doesn’t converge. If fact, since the function
is multi-modal it will require a scheduling of this parameter £ to achieve the global maximum
in 10 iterations. A simple scheduler would be at first start with a higher ¢ to account for more
exploration and as the iterations proceed, decay the parameter for more exploitation. However
this is a suggestion and feel free to come up with a different scheduling strategy.

As long as you can justify your strategy and the algorithm converges, you will receive full marks.
To check for convergence, run the bayesopt_implementation_viewer.ipynb for the single di-
mensional case.

Question 2.6: Intuition on Higher Dimensions (4 Points)

a) Implement the fit_and_predict () function under the FIXME section in gp.py. (2 Points)

b) After you run the code on bayesopt_implementation_viewer.ipynb for the higher dimen-
sional case, comment on the benefit of including a hyperparameter (meaning the parameters of
the covariance function 8 of the surrogate model) optimisation approach on your Bayesian Opti-
misation algorithm. (2 Points)

Note: For the coding questions, feel free to use the packages that are already imported in your
solutions but do not import any other package. There will be a penalty if you import extra packages.




A Q1: Generalisation Appendix

The following appendix section states the two-sided Hoeffding’s inequality and summaries the notation
used in Question

We recommend using the following version of Hoeffding’s inequality for this assignment.
Proposition 1 (Two-sided Hoeffding’s inequality). Let Z1,..., Zy be i.i.d. random variables and take
values in [0,1]. Let the true mean be uz and define the sample mean as ji &f % vazl Z;. Then, for any

€>0,
Pr{|ji— pz| > €} < 2exp(—2Née?). (A1)

The notation can be summarised by the following;:

Clean  Noisy

Distribution D D
Density P P
Samples S S

Data point (z,y) (7,7)

Random Variable (X,Y) (X,Y)

Table 1: Summary of notation for noisy objects.

B Q2: Gaussian Process Appendix

Definition 3. A Gaussian process (GP) is a collection of random variables, any finite number of which
have a joint Gaussian distribution.

Setup. We specify a GP by its mean function and covariance function as such:

and mathematically define a Gaussian process as,
f(x) ~ GP(m(x), k(x,x")) (B.2)

In this assignment, we will perform Gaussian Process Regression (GPR) using noisy observations to
account for more realistic modelling situations. Thus, our evaluation functions will have the form of

y=f(x)+e (B.3)
where € is some random noise.

Without loss of generality, we can assume the prior mean is zero (we can always add the mean vector
later), and incorporating the noise into the covariance function, we can define the prior with respect to
the covariance (using matrix notation) as,

Ky = K(X,X)+ 021 (B.4)

where o2 is the variance of the Gaussian noise, assuming it’s derived from i.i.d. data.

In addition, for the noise training outputs y, and the testing outputs f,, we can define their joint distri-
bution, by carefully partitioning the covariance matrix. This will be produce the following result,

HENICIara) (B3)

10



where for simplicity, we have defined each block component of the covariance matrix as,

K, : defined as the noisy training covariance matrix in Eq. [B:4]

K, : defined as the training-testing covariance matrix, i.e., K(X, X,)

K] : defined as the testing-training covariance matrix, i.e., K(X,,X)

K,,. : defined as the testing covariance matrix, i.e., K (X, X,)

Derivation of Eq.
PI(x) = Pr (I(x) > 0)
= E[1{10> riet)+6}]
=Pr(f(x) > f(x*) +¢)
e (L9200 S0 i)

o(x) o(x)

=1—Pr(f(x)_/‘(x) S HE—px)

a(x) a(x)

=1—
= 2(2),

:1—/: o(u)du
®(=2)

where
B0 = [ —€

o(x)

11

> = reparameterisation trick u

(B.6)
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