
COSC 2P03 – Assignment 1

This assignment deals with data structures. Specifically, you'll be providing an implementation for a defined

ADT. You'll also be reacquainting yourself with generics and packages.

Pool Queue:

The Macguffin games have been very popular lately. People from far and wide have been drawn to the games;

some to play with friends, and some to simply play. As you, of course, know, the Macguffin games can be

played individually, as a pair, as a trio, or even as a group of four.

Unfortunately, as you also know, the waiting lines can often get quite large for the games. What's more,

considering the sheer number of players, and the variety of group sizes, it can be problematic to fairly

accommodate people in an appropriate order.

Thus, the concept of a “Pool Queue” was created, to accommodate lines of people specifically for the Macguffin

Games. A Pool Queue is pretty simple:

• Players are added in groups of one, two, three, or four.

◦ The sequence of players within a group is not important.

• Players who are added in a group may not be split from that group.

• A Macguffin Game may be comprised of one or more groups of players.

◦ If multiple groups are used, then they are merged into a single group.

• Older groups within the structure must always take precedence over newer groups.

◦ For example, if the first group entered can be included in the requested group size, then it must be

included. Similarly, the second group has priority over the successive groups.

See the last page for an example.

Programming Task:

You have been provided with an interface for a PoolQueue. It defines the minimum operations for the list.

Your primary task is to create a class, ConcretePoolQueue, that implements the interface. Note that it

should throw an InsufficientElementsException if a remove is attempted that can't be satisfied.

You are free to implement the class in whatever fashion you desire (within reason). For example, though a

linked implementation is recommended (because it's much easier), a contiguous implementation is also allowed.

Outside of completely bizarre design choices1, you aren't required to concern yourself with things like optimal

efficiency, or adhering to any specific design style. However, refer to the interface for other requirements.

You've also been provided with a sample test program, but feel free to make your own as well (you may, for

example, wish to more rigorously test your implementation).

Writeup:

In addition to the sample output and printed code (see below), you must also include a typed writeup.

In it, discuss the Big-O complexities of your implementations for addTriple, removeTriple, and

hasTriple, and considerations for complexities of the generalized add/remove.

Include brief explanations for each.

Submission:

Create .pdf output of sample executions of your program. Zip those, along with a .pdf of your writeup, and

all of your .java source code, and submit through Sakai. Include the provided .java files unedited.

Lastly: remember that we have tutorial time precisely for things like this.

1For example, if you implement something resembling a roulette wheel, or a simulation of a trebuchet, or random dice...

The basic premise is simple. Assuming groups enter from the right and exit to the left:

 D

 BEG

ACFH

Suppose you wanted a group of 4. There are two possible patterns: ADEF, and BCGH.

In this case, only ADEF is considered valid, because A has the highest priority (and thus

must be included if possible). Even though BC does have a higher priority than DEF, that

doesn't matter; A trumps. Similarly, if a triple had been requested instead, even though

there would be three potential combinations (ABC, DEF, and AGH), only ABC is valid.

(Note: as mentioned above, you can consider the result of ABC to be equivalent to ACB,

BAC, BCA, CAB, and CBA)

---Sample Execution---

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

1

Enter Name: Abby

:- Added [Abby]

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

2

First: Bobby

Second: Claire

:- Added [Bobby,Claire]

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

3

First: Darren

Second: Edgar

Third: Felix

:- Added [Darren,Edgar,Felix]

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

2

First: Gilligan

Second: Harry

:- Added [Gilligan,Harry]

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

4

First: Ilona

Second: Jill

Third: Kevin

Fourth: Larry

:- Added [Ilona,Jill,Kevin,Larry]

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

9

One: true

Two: true

Three: true

Four: true

Count: 12

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

8

:> [Abby,Felix,Edgar,Darren]

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

9

One: false

Two: true

Three: false

Four: true

Count: 8

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

8

:> [Claire,Bobby,Harry,Gilligan]

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

8

:> [Larry,Kevin,Jill,Ilona]

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

9

One: false

Two: false

Three: false

Four: false

Count: 0

1. Add One 2. Add Two 3. Add Three 4. Add Four

5. Remove One 6. Remove Two 7. Remove Three 8. Remove Four

 9. Test Options 0. Quit

0

