University of West London UNIVERSITY OF

School of Computing and , WEST LONDON

Engineering 5
Title Coursework
Module Algorithms and Data Types
Module Code CP40064E
Module Leader: Sama Aleshaiker
Set by: Sama Aleshaiker
Moderated by: Hafiz Sherazi
Assignment: Coursework
Hand in Online submission via Blackboard
arrangements:
Element | Type Weighting | Due Date
1 Coursework 40% Sunday 15" May 2021 23:59

Extensions will only be granted in exceptional circumstances. Documentary evidence will be
required. Extensions must be agreed before the deadline. A student who fails to submit
course work or dissertation by the applicable deadline shall be deemed to have failed to
submit to assessment.

Learning

1- Apply mathematical skills to approximate running time of programs by analysing and
outcomes:

interpreting algorithms
2- Design algorithms using iteration and recursion
3- Use and implement Lists, Stack and Queues
4- Understand and employ Trees and ADT

5- Describe and use a variety of sorting algorithms

e For this coursework, you should create a logbook containing your answers to the questions below. You can find
a template for the logbook in the Assessments section of the module on Blackboard.

e Coursework should be all printed and submitted either word or PFD document. Photos or scanning to
handwritten work will not be accepted and marked.

e Any screenshot of your code must include comment that state your name and student ID within the code
such as:

And any screenshot of your console output must include your name and student ID:
student_firstname_surname STUDENT ID:21xxxxxx ADT coursework

Section 1 — Algorithm Efficiency

Question 1

What is the time complexity of the following three algorithms? Express your answer in terms of Big-
O notation and justify your answer:

A)
def display names with ID(names):
ID = 0;:
for n in names:
print("ID for ", n, "is"™, ID)
ID = ID + 1
[2 marks]
B)
def find item(mylist, item):
it len(mylist) == 0:
n = len(mylist)//2
print ("Midpoint =", mylist[n])
if mylist[n] == item:
1f item<mylist[n]:
return find item(mylist[:n], item)
return find item(mylist[n+l:], item)
[2 marks]
Q)
print ("Times tables grid")
n =10
for 1 in range(l, n+l):
print (i, end="\t")
for 1 in range (0, 75):
print ("=", end="")
print ()
for 1 in range(l, n+l):
for j in range(l, n+l):
print(i * j, end="\t")
[2 marks]

Section 2 — Recursion

Question 2

Write a Python function that returns the nth Fibonacci number, where n is an integer passed as a
parameter to the function.

[6 marks]

Section 3 — Stacks

Question 3

Evaluate the following postfix expressions, giving your answer as a single number:
a) 54*9+
b) 837*+4-
c) 1612+4%*2/

[3 marks]
Convert the following infix expressions to postfix:
d) 9+2*20-4
e) 4+5*7/3
f) (20-8)*(42-16)/(21+6)

[3 marks]

Section 4 — Queues

Question 4

First implement a Stack to insert your student ID digit by digit in order such as 213xxxxx then empty
your stack and insert the output into the Queue. What will be the output if you empty the Queue?
Demonstrate your work by showing the steps for both Stack and Queue and screenshot of your code
and output. Assuming both stack and queue are initially empty.

[8 marks]

Section 5 — Linked Lists

Question 5
Write a Python program that creates an unordered, singly-linked list consisting of 8 items. Each item
in the linked list should be a number. You can use the code given in the lecture slides for your Node
and UnorderedList classes.
Your node class should contain the following functions:
e aconstructor
e get data() —returns the data in the node
get_next() — returns the next node in the list
set_data() — sets the data in the node to the value given as a parameter
e set_next() — sets the node that this node links to, to the node given as a parameter

Your UnorderedList class should contain the following functions:
e aconstructor
e add() — adds a node to the head of the list, containing the number given in the parameter
e is_empty() —returns True if the list is empty, and False otherwise
e size() — returns the size of the list
e print_list() — displays the contents of all nodes in the list

Add code to create an UnorderedList object, and call its add() function to add 8 items to the list. Call
the is_empty(), size() and print_list() functions to show that they work. In your logbook, show your
code and the output when you run the code.

The 8 numbers you will add them to the list should be your student ID.

Example output:

O

Creating a linked list containing the following numbers: 21, 35, 40, 50, 15, 8
Displaying the contents of the list using the print list() function

8 15 50 40 35 21

Testing the is empty() function

False

Testing the size() function

6

[5 marks]

Add a function called search() to your UnorderedList class in Question 5.1. This function should take
a number as a parameter and return True if the number is contained in the linked list, or False if the
number is not in the list.

Add code to your program to allow the user to enter a number, and search for the number in your
linked list. Display a message to the user indicating if the number they entered was found in the list
or not. In your logbook, include your code, and also output that shows you have tested the search
function for a number in the list and a number not in the list.

Example output:

Please enter a number to search for in the list: 50
True

Please enter a number to search for in the list: 238
False

[3 marks]

Section 6 — Sorting

Question 6

Selection sort: use your student ID as list of integers to be sorted by a selection sort algorithm. Show
the contents of the list after each pass through the list.
The list should be your 8-digit student ID.
Example: If your student ID is 21234567 then your list will be
[2,1,2,3,4,5,6,7]
[3 marks]

Insertion sort: use your student ID as list of integers to be sorted by a insertion sort algorithm. Show
the contents of the list after each pass through the list.
The list should be your 8-digit student ID.
Example: If your student ID is 21234567 then your list will be
[2,1,2,3,4,5,6,7]

[3 marks]

Marking Criteria

Weak / 0% . .
39/0/ ° Sufficient / 40% - 69% G Good / 70% - 100%
- (]
1 Wrong Incorrect Big O notation/ Justification Correct Big O notation with
6 marks answer not given justification
2 Partially impl ted cod d . . .
Incorrect artiafly imp emer’1 (.e code/ your code Fully implemented function with
6 marks . and output doesn’t include your name
function screenshots of the code and output
and student ID
3
6 marks 1 mark for each correct answer
4 Partially impl
Incorrect artially Imp eme?t?d code/ your code Fully implemented function with
8 marks . and output doesn’t include your name
function screenshots of the code and output
and student ID
5 Partially impl ted cod d . .
Incorrect artialy imp eme? (.e code/ your code Fully implemented code with
8 marks and output doesn’t include your name
output screenshots of the output
and student ID
6 Incorrect Partially correct sorting algorithm/ your | Correct sorting algorithm
6 marks sorting student ID wasn’t used step by step

