
Instructor: L.-P. Chen

SS4850G/9850B Assignment #1

(Due Feb 14 2020 before 13:30)

• Show all your works in details and provide your code for computations.

• In Questions 4 to 6, use the “Biweight” kernel.

• Write down your name, student id, and you are undergraduate/graduate stu-

dents.

• Please submit your hard copy in class.

1. In Section 2.1, we discussed properties of LSE β̂ and residual e = (In − X(X>X)−1X>)y.

Based on the notation defined in Section 2.1, please show that

(a) the estimator β̂ is an unbiased estimator of β with var(β̂|X) = σ2ε (X
>X)−1. Moreover,

β̂ is the Best Linear Unbiased Estimator (BLUE).

(b) E(e|X) = 0, var(e|X) = σ2ε (In −H) with H = X(X>X)−1X>, and cov(e, β̂|X) = 0.

(c) Furthermore, find the unbiased estimator of σ2ε .

2. Suppose that {(Yi, Xi) : i = 1, · · · , n} is a sequence of independently and identically dis-

tributed (i.i.d.) random variables with Yi, Xi ∈ R. Assume that var(Xi) = σ2X . We consider

the simple linear regression model

Yi = β0 +Xiβx + εi, (1)

where εi
i.i.d.∼ N(0, σ2ε ) and εi is independent of Xi.

(a) In some applications (e.g., when collecting data), we are not able to precisely measure

Xi, but instead, we can only observe X∗i . It is called mismeasurement. As a result,

we usually have model (1) with Xi replaced by X∗i in this situation. Please find the

estimators of βx based on Xi and X∗i , and denote them by β̂x and β̃x, respectively.

(b) We usually build up the relationship between Xi and X∗i by the following model:

X∗i = Xi + δi, (2)

where δi
i.i.d.∼ N(0, σ2δ ) and δi is independent of Xi and εi. Based on (2), show that

β̂x
p−→ ω1βx and β̃x

p−→ ω2βx for some non-negative values ω1 and ω2 as n→∞, where

“
p−→” represents convergence in probability. Also, you should specify the exact values of

ω1 and ω2.

(c) Find variances of β̂x and β̃x, i.e., var(β̂x) and var(β̃x). Moreover, compare these two

variances.
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(d) (Do a simple simulation study). Consider the sample size n = 1000. Let β0 = βx = 1,

σ2ε = 1. Let Xi be generated by N(4, 1). Then the response Yi can be generated by

model (1). In addition, consider σ2δ = 0.15, 0.55 and 0.75, and then generate X∗i by

(2). Suppose that we run 1000 repetitions. Based on your “artificial” data, calculate

numerical results for β̂x, β̃x, var(β̂x) and var(β̃x). Summarize your numerical results as

the following table and compare with (a), (b), and (c).

Table 1: Simulation result

β̃x β̂x
σ2
δ = 0.15 σ2

δ = 0.55 σ2
δ = 0.75

Bias
var

Note: Bias is β̃x − βx and β̂x − βx.

(e) Summarize your findings in (a) - (d).

3. Suppose f(y) is a probability density function (pdf). Let

R(f (r)) =

∫ ∞
−∞

{
f (r)(y)

}2
dy,

where f (r)(y) is the rth derivative of f(y).

(a) When f is pdf ofN(µ, σ2), please findR(f (2)) so that we are able to obtain the bandwidth

based on normal scale rule.

(b) Show that under some conditions,

R(f (r)) = (−1)r
∫ ∞
−∞

f (2r)(y)f(y)dy.

Which kinds of conditions do we need here? Does standard normal distribution satisfy

these conditions?

4. Consider the wool prices data set (wool.txt) that reports the wool prices at weekly markets.

The response of interest is the log price difference between the price of a particular wool 19

µm (cents per kilogram clean) and the floor wool price (cents per kilogram clean) at markets:

yt = log(19 µm price/floor price),

and the covariate xt is the time in weeks since January 1, 1976.

(a) Fit the data by a simple linear regression model and a polynomial model of order 10.

Give scatterplot of the data and add the two fitted lines, one for simple linear model

and one for polynomial model. Put clear and proper legends on it.

(b) Fit the data by local constant kernel estimator and local linear kernel estimator. Choose

the bandwidths in these two estimators by the CV method. Give scatterplot of the data

and add the two fitted lines. Put clear and proper legends on it.
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(c) Fit the data by local linear kernel estimator. Choose the bandwidths by the CV and

direct plug-in methods. Give scatterplot of the data and add the two fitted lines. Put

clear and proper legends on it.

(d) Let ŷt denote the fitted values determined by methods in (a) to (c). Compute
n∑
t=1

(ŷt−yt)2.

Finally, summarize your findings.

5. Consider the data from undergoing corrective spinal surgery. The objective was to determine

important risk factors for kyphosis. The response (y) is the presence or absence of the

kyphosis. The risk factor (x) is the age in weeks. The data is in kyphosis.txt.

We consider the following model:

yi ∼ Bernoulli
(
π(xi)

)
with log

{
π(xi)

1− π(xi)

}
= f(xi).

(a) Suppose that we use the local constant and local linear kernel methods to estimate π(x).

Choose the bandwidths h by the CV method, and use h to calculate the estimators

π̂(xi);

(b) Assume that f(x) is a linear function of x. We estimate π(x) under this assumption.

Plot this estimator and local constant / linear kernel estimators in the same graph. Put

clear and proper legends on it. Does the linear assumption for f(x) look reasonable

here?

6. This problem refers to data from a study of nesting horseshoe crabs. Each female horseshoe

crab in the study had a male crab attached to her in her nest. The study investigated factors

that affect whether the female crab had any other males, called satellites, residing near her.

The response outcome y for each female crab is her number of satellites. The covariate (x) is

the female crab’s carapace width. The data is in crab.txt.

We consider the following model:

yi ∼ Poisson
(
µ(xi)

)
with log {µ(xi)} = f(xi).

You are asked to answer the following questions:

(a) By the similar idea in Section 3.4, please write down the formulations of `i(β0, β1) and

the performance measure. Also, determine the CV score.

(b) Choose the bandwidth h by the CV score based on local constant and local linear kernel

estimators, and then calculate µ̂(xi) by local constant and local linear kernel estimators.

(c) Assume that f(x) is a linear function of x, estimate µ(x) under this assumption and

plot it and local constant and linear kernel estimators in the same graph. Put clear and

proper legends on it. Does the linear assumption look reasonable here?
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