Table of contents

1. Introduction

This project is an intern project Made By Saeed Aburahma the main goal of the project is Optimizing
the searching on the logs process by making it Less time Consuming and with side goals that will be
shown in the wiki , As it is known Searching through documents or text files is one of the most
frequently tasks a user of any Computer might do, the search is arguably one of the most popular
tasks. While there exist many different ways to implement a search technique we will try to find the
most efficient and effective way to reach our goal.

1.1 Problem Statement

Searching through Logs is a routinely mission that helps us to retrieve certain critical information ,At the moment, whenever
we have to access the logs to investigate a given issue, we typically have to go through many GBs of data, using zgrep to
decompress and search the files, which takes a long time.

In one case, We wanted to search through many 3000 orders logs that zgrep took around 8 days to finish. This isn't ideal, as it
hampers our ability to investigate

ideally, we should track most frequently accessed service logs such that when new logs are published they're parsed and
indexed based on attributes of interest so when time comes for us to search through the logs, we can search quickly and
pinpoint the issue. so the search operation will be more efficient regarding time and more effective to solving problems.

1.2 Requirements

1.2.1 Functional Requirements

1. The system should be able to find and return from its storage, all files relevant to the keyword typed in the search query by a user And at
what line the word occurs in the file and the content of that line.

2. The system should return the files relevant to the keyword without taking in consideration sensitivity of the letters.

3. The system should be able to index the files based on a specific pattern that the user enters.

4. The system will be a CLI based.

5. The system should be able while indexing to categorise the logs based on a particular scheme.

6. The system should be able to update the indexed file on a schedule and be able to read filasiaachasaatime span.
7. The System should be able to trigger an alert via cloud watch if a repeated error was foun(Uiasiababes

Table of contents

1.2.2 Non Functional Requirements
1. The system should have low latency. Whenever a user makes a query, we want the search results to appear as fast as possible.
2. The system should be scalable. It should be able to accommodate a growing number of files in its Data Source.

3. The system should be maintainable. it should be easy to change the way of indexing or the searching.

2. Solutions

Note: We won't be using any third party indexers like lucene to cover the competencies for the SDE |4 Role.

2.1 Approach one: Inverted Indexing

The most common way to make the search on files faster is to utilize an inverted index.

Inverted index : is a key-value data structure, where a term (key) is associated with a sorted list of documents that contain the
term (value), storing a mapping from content, such as words or numbers, to its locations in a document or a set of documents. In
simple words, it is a hash-map like data structure that directs you from a word to a document

When a user of a search engine wants to retrieve a set of documents related to a particular term, the inverted index data
structure enables the engine to quickly retrieve the list of documents containing that term instead of going through all documents
and checking if the document contains the term. Once the list of documents is retrieved, the search engine often scores them
using a specific metric to return the list of top-scoring documents to the user.

2.1.1 Approach one High Level Design

Storage

Screenshot ||

(Y

()

| Table of contents |

B = i I 25 et = =

and checking if the document contains the term. Once the list of documents is retrieved, the search engine often scores them
using a specific metric to return the list of top-scoring documents to the user.

2.1.1 Approach one High Level Design s

x
v
v

Config

Executor | ——> 5)Pass Files
M@M)

Command Line Interface

Scheduler

User
1)For the first time or whether the User Wants to change directory the users Chooses The Directory That will be indexed via Cli.

2)Command line interface will pass the path name to an executor that will pass them to the reader.
3)&4)Reader will Read And Retrieve wanted files from storage.

5)Then The reader will pass the files to the indexer.

6)The Indexer will process the files and then struct the indexed file and save it on the storage.

7)A scheduler will start running on a scheme the user wants the indexer to index the files by , indexing the new files that is added to the
directory Ex:on a daily basis.

Extra step: A trigger executor will run To do further actions if a specific condition(s) was found while indexing the files, Conditions will be defined
in the config file.

Table of contents

7)A scheduler will start running on a scheme the user wants the indexer to index the files by , indexing the new files that is added to the
directory Ex:on a daily basis.

Extra step: A trigger executor will run To do further actions if a specific condition(s) was found while indexing the files, Conditions will be defined
in the config file.

3)Pass path and

1)Ch: I
)Choose Indexed The Que

File
2)Enters a search
Query

6)Show Output

: output
User Command Line Interface Searcher

1)&2)User will Will Choose an indexed file and a search query via command line interface.
3)cli will pass them to the executor to the searcher which is a query processor.
4)&5)Searcher will search the indexed file and retrieve the wanted infos.

4)The Result will be showed to the user as an output.

Further actions That was mention before could take place such as:
1)a cloud watch to alert user if while indexing If there was a common error code found.

2)Lambda client to be called when a certain use case appears.

Notes:
1.The Storage Could be Disk Storage or Cloud but Now its disk storage.

2.The user chooses if he wants the indexing be done based on a specific word or a specific time span or default indexing.

Table of contents

1.The Storage Could be Disk Storage or Cloud but Now its disk storage.

2.The user chooses if he wants the indexing be done based on a specific word or a specific time span or default indexing.

Reader A component to read the log files from the
storage.

Indexer A component to index the log files based on a
pattern that is defined by the user in the config
file

Storage An abstraction of a storage defining where the

log files are stored and where the indexed file
will be saved, could be local disk storage or cloud

Trigger Executor

A component that will work if desired conditions
were satisfied while indexing log files line by line,
doing actions defined by user

Scheduler

A component to run the indexing part on a basis
to keep the indexed file updated

Searcher

A component to search through the indexed file
for a wanted word(s)

Output

An output will be shown to the user in the
following format:

Was found in text file (Text file name) at line
(Line Number) and the Content of the line

Executor

An Entry point to pass the commands from the
user to the right component

2.1.2 Approach one Indexing System Design

| Table of contents |

2.1.2 Approach one Indexing System Design

The indexing process here goes through these steps to generate inverted index for every log file then merging them together so the steps are :

1. Fetching the Document
Reading The Log Files from a directory saved in a storage.
Conditions may be added Like time spans.

2. Pre-Processing

What were the important words we may be looking for? "Order id", "errors", "exception ", "successful",etc.. But most of the other words are just a
waste. We denote the most occurring words as "stop words" and remove them so that | don't get indexes for words like "I", "the", "we", "is",

"an".and also remove punctuation such as,', ", ?, etc... to save space and minimize the inverted jndex file
Screenshot
Wanted natterns to build the inverted index based on could be defined in the confia file

Table of contents

The indexing process here goes through these steps to generate inverted index for every log file then merging them together so the steps are :

1. Fetching the Document
Reading The Log Files from a directory saved in a storage.
Conditions may be added Like time spans.

2. Pre-Processing

What were the important words we may be looking for? "Order id", "errors", "exception ", "successful",etc.. But most of the other words are just a

waste. We denote the most occurring words as "stop words" and remove them so that | don't get indexes for words like "I", "the", "we", "is",
an".and also remove punctuation such as,', ", ?, etc... to save space and minimize the inverted index file.

Wanted patterns to build the inverted index based on could be defined in the config file.

3. Building the inverted index
The index is built by parsing the documents for words . For each word, the reference of the document it is present in is included in the table
along with the line number and the content of the line.

While scanning a document, each word that the system comes across is located in the index and the ‘Documents’ column for that word is
updated to include the document being scanned. If, while scanning a document, the system comes across a word that's not already present in the
index, a new row is created for the word, and the reference for the document is added to the ‘Documents’ column.

For each word in the table, the ‘Documents’ column will have references to all the documents that the word appears in. Depending on the
application, you can also add additional columns in the index, such as frequency of the word, it's location in the documents etc.

The indexing could be done based on a specific word(s) that user wants to minimize the indexed file size if the user is only interested in only

searching for these word(s).
4. Merge and Store the Terms

Merging the the posting list and save them in the storage as one whole posting list.

Documents Runs on disk Final index

Parsed document

. merge
d .
read. 5| .., dark, .., keep, night, ... "
A -7 - \ ~ ~ \
/ \ . N |
i Tt ~ N b h ~ \\ \

N

! Slush, Ed -

]
H S
keep |[|---= D=~ | -

&
=8l ’
L el e—
2= |

Table of contents

e MMV TVl STTTE it R gty e v TR TR TR A At

Documents in
the collection Filtering and Tokenization Inverted Index

Docl
wild

Stop Words Terms/Dictionary Documents/Posting Lists

apple 3,56

found in the . H
Jand of australia 1,8

australia... : basket 6
: bombay 4,6
We now are

in the digital crime 9,10
world where H

we are -
connected to digital 2,4,8
everyone Jog >

elephant
finland

he had stolen
from the....

and many more....

And here is an example of how these 3 Docs were indexed.

2.1.3 Approach one Searching System Design

| Table of contents |

2.1.3 Approach one Searching System Design

Search Query

User

1.Preprocessing Queries:

As the initial step, this module of the search engine processes, and, if needed, rewrites the query to make it easier to match it to the right
documents. Similar to preprocessing the documents before building an inverted index, ‘stop words’ removal, spelling correction and case folding
are some of the operations carried out on the users' queries before retrieving Files based on them.

2.Files Retrieval:

Since our inverted index has individual words stored in each row and the corresponding documentsinthe calumn, document retrieval based on
single-word queries is the simplest case so the after finding the highest score files that matched (kb be retrieved and the where is

Table of contents

1.Preprocessing Queries:

As the initial step, this module of the search engine processes, and, if needed, rewrites the query to make it easier to match it to the right
documents. Similar to preprocessing the documents before building an inverted index, ‘stop words’ removal, spelling correction and case folding
are some of the operations carried out on the users' queries before retrieving Files based on them.

2.Files Retrieval:

Since our inverted index has individual words stored in each row and the corresponding documents in the column, document retrieval based on
single-word queries is the simplest case so the after finding the highest score files that matched the query it will be retrieved and the where is
that word exactly in the Txt. File(which line) And the content of that line.

1)Type of queries:
1-Single Word Queries:

The simplest type of search is that for the occurrences of a single word The search can be carried in the indexed file in a O(m) search cost, where
m is the length of the query.

2-Multi words Queries:

Since our inverted index has individual words stored in each row and the corresponding documents in the column, document retrieval based on
single-word queries is the simplest case. However, users often search for phrases and sentences, not single words. Even after removal of ‘stop
words', queries will have multiple words. With phrases typed in the search engine, tSo we do a conjunctive search.

¢ Conjunctive Search
Conjunctive search is one in which the search engine locates documents which contain all the words present in the user's query.
To be more specific, conjunctive search is AND (intersection) operation on the individual results of each word in the query.

Lets say we have this indexed file:

Word Documents
Apple 1.2
Health 1.2
Fruit 1
Take 2
Care 2

Table of contents

Now suppose someone searches for “healthy fruits”. After stemming the root word, we have two words, ‘health’ and ‘fruit’, as shown in the
diagram below:

Healthy —— Health —— [1,2]\

Fruits —— Fruit —— [1]/

Conjuctive
Search

‘Health’ appears in documents 1 and 2, and fruit only appears in document 1. We want to pick the documents that have all the words typed by

the user, so we'll perform an AND operation on the results and get document 1 as the result as it has both words, health and fruit. It is returned
to the user as the best match for the query that they typed in.

AND |——> [1]

Query Vocabulary Inverted lists
dark ---> i ‘ pointers (O |
| \ \
I 1 \
I 1 \
keep e -—->’ \ \ ! | \
A\ A 1 \ |
\ \ ’ \ \
\ \ ’ \
\ N) \ \
night ---> P \ ! TS0 ! ‘. add contributions
-~]
| \ \ ! P S~o \ AN
| \ \ I 4 Y \
| A \\ ! P T~ N
Y \ Ve A ERFEN

Query Pre-processing | ‘

Searching The lists l ‘

Similarity scores I ‘

T

I

Y and then select
— the highest values

=~

=~

Table of contents

Figure to show the Search process.

2.1.4 Approach one Low Level Design

DiskLogfile
"o
":,,,s
<<Interface>>
LogfileRepo Cli
4
LogFiles 2
log: file
«interface»
Indexer
\ |
CommandParser
0\"
& + SearchWord: String
& + PathName : String

Invertedindexer

2.1.5 Approach one Flow Diagram:

User

P R W C———

Diskindexfile
“
2
)
%
2
d Indexfile
index :File
<<Interface>>
IndexFileRepo
<
S
<<Interface>>
Searcher
A
%
%
2
®
InvertedindexSearch

