
10/4/22, 9:58 AM Milestone 7: Unification

https://canvas.vt.edu/courses/156146/assignments/1611307 1/7

Milestone 7: Unification
| 10/18/2022

100 Possible Points

Add Comment

Details

The purpose of this milestone is to implement the core of the logical resolution process used to answer
queries: the unification algorithm.

Unification in First-Order Logic
Over the next three milestones we will be implementing the ability make queries against a knowledge-
base by implementing the ask member of the KnowledgeBase class. An important step in the process
will be to find a set of substitutions for variables that will make two expressions equivalent. This
process is called unification.

For example consider two vt-prolog expressions f(a) and f(X) as expression trees. Unification will
find an assignment of the variable X that will make the two trees (and thus expressions) identical. This
is obviously X/a in this simple example, where the slash is read as “substituted by”, i.e. “X substituted
by a” or f(a) and f(X) unify under the substitution X/a .

Substitutions can replace whole subtrees as well. For example, trying to unify f(g(a),b) and f(X,b)
succeeds under the substitution X/g(a) , i.e. the variable X must be replaced by the tree g(a) to make
the two expressions equivalent.

In some cases, when there are no variables, unification acts like a test for equality. For example
f(a,g(b,c)) and f(a,g(b,c)) unify under the empty substitution. Unification can also fail, for example

by trying to unify f(a,b) and f(X,c) .

Finally, when we have multiple expressions, as in the clauses of a knowledge-base, we might have
multiple valid substitutions. For example given the simple knowledge-base consisting of just facts:

likes(mary, pizza).

likes(bob, pizza).

likes(sue, soccer).

The query likes(X, pizza) should unify with two of the three expressions, giving the substitution
X/{mary,bob} . This is more complicated in the case of rules, which we postpone to milestone 9.

Thus we see that we need to next implement two new pieces of code: a data structure to hold
(possibly multiple) substitutions, and an algorithm to perform unification. That is the focus of this

10/4/22, 9:58 AM Milestone 7: Unification

https://canvas.vt.edu/courses/156146/assignments/1611307 2/7

milestone, which will introduce a new module: Unification.hpp , and Unification.cpp with associated
unit tests UnificationTests.cpp .

Substitution Set
The data structure for holding substitutions needs to be able to map from expression trees, to multiple,
arbitrary trees as fast as possible. We will need to be able to insert a substitution, lookup substitutions,
and iterate through the set of substitutions. You should choose an appropriate container from the
standard library and typedef it to the type SubstitutionData .

You should then implement, in the namespace vtpl, the class Substitution with the following interface:

class Substitution {

public:

 typedef typename SubstitutionData::iterator IteratorType;

 typedef typename SubstitutionData::const_iterator ConstIteratorType;

 // lookup an expression key in the substitution set and return a list of Expressions

 // the key maps to, or a list of size zero if no mapping exists

 std::list<ExpressionTreeNode> lookup(const ExpressionTreeNode& key) const;

 // insert a mapping from Expression key to Expression value, appending it if a mapping already exists.

 void insert(const ExpressionTreeNode & key, const ExpressionTreeNode & value);

 // return an iterator to the first element of the arbitrarily ordered set

 IteratorType begin();

 // return an iterator to one past the last element of the arbitrarily ordered set

 IteratorType end();

 // return a const iterator to the first element of the arbitrarily ordered set

 ConstIteratorType constBegin() const;

 // return an const iterator to one past the last element of the arbitrarily ordered set

 ConstIteratorType constEnd() const;

private:

 // TODO

};

Unification Algorithm
The unification algorithm returns a result consisting of a Boolean flag indicating if unification
succeeded and if true the associated substitution. We can easily define a type to hold this as follows:

struct UnificationResult{

 bool failed;

 Substitution substitution;

};

10/4/22, 9:58 AM Milestone 7: Unification

https://canvas.vt.edu/courses/156146/assignments/1611307 3/7

The following function should take two expression trees and an initial substitution set, and attempt to
unify them, modifying the passed UnificationResult :

void unify(const ExpressionTreeNode & x, const ExpressionTreeNode & y, UnificationResult & subst);

The algorithm does a recursive descent search of the two trees, comparing nodes and inserting
substitutions as needed. It can be described in pseudo-code as follows:

function unify(x,y,s) return a substitution to make x and y the same

inputs:

 * x a variable, constant, list, or compound expression

 * x a variable, constant, list, or compound expression

 * s the substitution list build up so far

if s == failure then return failure

else if x = y then return s

else if isvariable(x) then return unify-var(x,y,s)

else if isvariable(y) then return unify-var(y,x,s)

else if iscompound(x) and ifcompound(y) then

 return unify(x.args, y.args, unify(x.op, y.op))

else if islist(x) and islist(y) then

 return unify(x.rest, y.rest, unify(x.first, y.first, s))

else return failure

where op refers to the predicate name of a compound, and args the argument list of a compound.

The helper function unify-var , to unify variables and make the substitution, is given by:

function unify-var(var, x, s) returns substitution

inputs:

 * var is a variable

 * x a variable, constant, list, or compound expression

 * s is a substitution

if var/val in s then return unify(val, x, s)

else if x/val in s then return unify(var, val, s)

else return add var/x to s

where x/y means y is assigned to x in the substitution.

You should write out a few expression trees and manually go through the algorithm to ensure you
understand how it works.

Instructions

Your task in this milestone is to finish the Unification module for VT-Prolog as described above.

Unification.hpp should define the structure UnificationResult and the function unify , described
above, in the namespace vtpl .
The unify function should be implemented in the file Unification.cpp .
The file UnificationTests.cpp should contains Catch based unit tests for your Unification module.

10/4/22, 9:58 AM Milestone 7: Unification

https://canvas.vt.edu/courses/156146/assignments/1611307 4/7

As in previous milestones, you can define additional units of code (classes, helper functions) in any
implementation (.cpp) file, but do not change the public interface of any headers (.hpp) beyond that
specified.

Steps to build and run the tests in the reference environment (after
vagrant ssh).
Note: you should be working primarily on your host system for development. These steps are just to
check the code in the reference environment, as well as test code coverage and memory safety.

To configure the build

cmake /vagrant

To run the build

make

or

cmake --build .

To run the unit tests

make test

or

cmake --build . --target test

The test output is placed in ``Testing/Temporary/LastTest.log. You can also just run the tests
directly:

./unit_tests

To run the memory checks on your unit tests.

cmake -DMEMTEST=TRUE /vagrant

followed by

make memtest

or

cmake --build . --target memtest

10/4/22, 9:58 AM Milestone 7: Unification

https://canvas.vt.edu/courses/156146/assignments/1611307 5/7

This should report no “definitely lost” leaks and no access errors. Look for

LEAK SUMMARY:

 definitely lost: 0 bytes in 0 blocks

or

All heap blocks were freed -- no leaks are possible

and

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

To run your tests and check code coverage.

cmake -DCOVERAGE=TRUE /vagrant

followed by

make coverage

or

cmake --build . --target coverage

This will create a directory called Coverage_Report in the build directory. You can copy it back to your
host by doing cp -r Coverage_Report /vagrant . Open the index.html file inside it to examine the
detailed report.

To configure and run the build in strict mode (increased warnings, warnings become errors)

cmake -DSTRICT=True /vagrant

cmake --build . --target clean

cmake --build .

Note: you can also combine all the options into one build configuration, i.e.

cmake -DSTRICT=True -DCOVERAGE=TRUE -DMEMTEST=TRUE /vagrant

cmake --build .

cmake --build . --target test

cmake --build . --target memtest

cmake --build . --target coverage

Submission
You must add changes to your repository and push them to GitHub regularly to demonstrate progress.
When you are ready to submit your assignment you must:

10/4/22, 9:58 AM Milestone 7: Unification

https://canvas.vt.edu/courses/156146/assignments/1611307 6/7

1. Tag the git commit that you wish to be considered for grading as “m7”.

git tag m7

or

git tag m7 COMMIT

where COMMIT is the commit id you wish to tag.

2. Push this change to GitHub

git push origin m7

If you need to tag a different version of your code simply create and push a new tag appending a full
stop followed by a monotonically increasing number, e.g. m7.1, m7.2, etc.

Be sure you have committed all the changes you intend to. Before the milestone due date it is a good
idea to re-clone your repository into a separate directory and double check it is what you intend to
submit. Failure to complete these steps by the due date will result in a failed submission.

Milestone Assessment
Milestone 7 will be assessed according to the following criteria.

Your code compiles in the grader/reference environment 1 point

Your tests pass 1 points

Your tests show no memory errors 1 points

Your code coverage 5 points

Your code compiles in strict mode 1 points

Your code compiles with instructor tests in strict mode 1 points

Your code passes instructor tests 20 points

Instructor tests show no memory errors 5 points

Note, if your code does not build in the reference environment you will receive no points. Correctness
is determined by the proportion of instructor unit tests that pass. Code quality will be assessed in this
assignment by ensuring your code compiles cleanly, with no warnings, using the strict mode specified
above, there are no memory errors (leaks, use before initialize, etc), and proportion of your tests that
cover your code (code coverage), which should exceed 98% of lines.

Your milestone can be checked in the auto-grader (https://grader.ece.vt.edu) . The auto-grader uses the
exact same environment as the reference so if your code compiles there, it should in the auto-grader as
well (but check anyway!). You are rate-limited to only four submissions every hour to the auto-grader

https://grader.ece.vt.edu/

10/4/22, 9:58 AM Milestone 7: Unification

https://canvas.vt.edu/courses/156146/assignments/1611307 7/7

so as to prevent you from using it as your development environment and encourage proper debugging
skills.

https://grader.ece.vt.edu/

