
9/30/22, 5:31 PM Milestone 6: Parsing the Knowledge Base

https://canvas.vt.edu/courses/156146/assignments/1607406 1/5

Milestone 6: Parsing the Knowledge Base
| 10/11/2022

100 Possible Points
Add Comment

Details

The purpose of this milestone is to finish the parser by adding the ability to parse the knowledge base
grammar.

Parsing Knowledge-bases
Recall the full BNF grammar for our vt-prolog language:

<knowledgebase> ::= <clause list>

<clause list> ::= <clause> { <clause> }

<clause> ::= <expression> '.' | <expression> ':-' <expression list> '.'

<query> ::= <expression list> '.'

<expression list> ::= <expression> { ',' <expression> }

<expression> ::= <atom> | <atom> '(' <arg list> ')'

<arg list> ::= <arg> { ',' <arg> }

<arg> ::= <atom> | <variable> | <expression>

<atom> ::= <lowercase letter> { <character> }

<variable> ::= <uppercase letter> { <character> }

<lowercase letter> ::= a | b | c | ... | x | y | z

<uppercase letter> ::= A | B | C | ... | X | Y | Z | _

<character> ::= <lowercase letter> | <uppercase letter> | <numeral>

<numeral> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

This describes a knowledge-base as an unordered list of clauses. Each clause is either a fact or a rule.
An expression followed by an END token is a fact. An expression followed by an IMP token, followed
by an expression list, followed by and END token is a rule. As in milestone 5 you will be able to use
much of your existing parser code.

parseKnowledgeBase functions
This should be a free function with the following definition.

/// Given a TokenList from lexer, attempt to parse as a vt-prolog knowledge base.

///

/// If returned ParseError object is set, then an error occurred and the KnowledgeBase

/// may be incomplete.

std::tuple<ParseError, KnowledgeBase> parseKnowledgeBase(const TokenList& tokens);

9/30/22, 5:31 PM Milestone 6: Parsing the Knowledge Base

https://canvas.vt.edu/courses/156146/assignments/1607406 2/5

Also write a function to parse queries directly from a string, using the tokenize function from milestone
1 internally and calling the above function. It should have the definition:

/// convenience function to parse a knowledgebase directly from string

std::tuple<ParseError, KnowledgeBase> parseKnowledgeBase(const std::string& input);

The above class and function definitions should be placed in the file Parser.hpp and implemented in
Parser.cpp . You can (and should) implement any additional classes or functions inside Parser.cpp , but

do not expose them in the Parser.hpp header.

Unit Tests
You should modify ParserTests.cpp to hold the unit tests for your module additions. You should use
these tests to help drive your development process as described in meeting 5. These should cover as
close to 100% of your Parser module code as possible.

Note the tests directory in the repository contains several examples of knowledge-bases you should be
able to parse.

Instructions

Your task in this milestone is to finish the Parser module for VT-Prolog as described above.

Parser.hpp should define the functions parseKnowledgeBase , described above, in the namespace
vtpl .

These classes and functions should be implemented in the file Parser.cpp .
The file ParserTests.cpp should contains Catch based unit tests for your Parser module.

As in previous milestones, you can define additional units of code (classes, helper functions) in any
implementation (.cpp) file, but do not change the public interface of any headers (.hpp) beyond that
specified.

Steps to build and run the tests in the reference environment (after
vagrant ssh).
Note: you should be working primarily on your host system for development. These steps are just to
check the code in the reference environment, as well as test code coverage and memory safety.

To configure the build

cmake /vagrant

To run the build

9/30/22, 5:31 PM Milestone 6: Parsing the Knowledge Base

https://canvas.vt.edu/courses/156146/assignments/1607406 3/5

make

or

cmake --build .

To run the unit tests

make test

or

cmake --build . --target test

The test output is placed in ``Testing/Temporary/LastTest.log. You can also just run the tests
directly:

./unit_tests

To run the memory checks on your unit tests.

cmake -DMEMTEST=TRUE /vagrant

followed by

make memtest

or

cmake --build . --target memtest

This should report no “definitely lost” leaks and no access errors. Look for

LEAK SUMMARY:

 definitely lost: 0 bytes in 0 blocks

or

All heap blocks were freed -- no leaks are possible

and

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

To run your tests and check code coverage.

cmake -DCOVERAGE=TRUE /vagrant

9/30/22, 5:31 PM Milestone 6: Parsing the Knowledge Base

https://canvas.vt.edu/courses/156146/assignments/1607406 4/5

followed by

make coverage

or

cmake --build . --target coverage

This will create a directory called Coverage_Report in the build directory. You can copy it back to your
host by doing cp -r Coverage_Report /vagrant . Open the index.html file inside it to examine the
detailed report.

To configure and run the build in strict mode (increased warnings, warnings become errors)

cmake -DSTRICT=True /vagrant

cmake --build . --target clean

cmake --build .

Note: you can also combine all the options into one build configuration, i.e.

cmake -DSTRICT=True -DCOVERAGE=TRUE -DMEMTEST=TRUE /vagrant

cmake --build .

cmake --build . --target test

cmake --build . --target memtest

cmake --build . --target coverage

Submission
You should add changes to your repository and push them to GitHub regularly to demonstrate
progress. When you are ready to submit your assignment:

1. Tag the git commit that you wish to be considered for grading as “m6”.

git tag m6

or

git tag m6 COMMIT

where COMMIT is the commit id you wish to tag.

2. Push this change to GitHub

git push origin m6

If you need to tag a different version of your code simply create and push a new tag appending a full
stop followed by a monotonically increasing number, e.g. m6.1, m6.2, etc.

9/30/22, 5:31 PM Milestone 6: Parsing the Knowledge Base

https://canvas.vt.edu/courses/156146/assignments/1607406 5/5

Be sure you have committed all the changes you intend to. Before the milestone due date it is a good
idea to re-clone your repository into a separate directory and double check it is what you intend to
submit. Failure to complete these steps by the due date will result in a failed submission.

Milestone Assessment
Milestone 6 will be assessed according to the following criteria.

Your code compiles in the grader/reference environment 1 point

Your tests pass 1 points

Your tests show no memory errors 1 points

Your code coverage 5 points

Your code compiles in strict mode 1 points

Your code compiles with instructor tests in strict mode 1 points

Your code passes instructor tests 20 points

Instructor tests show no memory errors 5 points

Note, if your code does not build in the reference environment you will receive no points. Correctness
is determined by the proportion of instructor unit tests that pass. Code quality will be assessed in this
assignment by ensuring your code compiles cleanly, with no warnings, using the strict mode specified
above, there are no memory errors (leaks, use before initialize, etc), and proportion of your tests that
cover your code (code coverage), which should exceed 98% of lines.

Your milestone can be checked in the auto-grader (https://grader.ece.vt.edu) . The auto-grader uses the
exact same environment as the reference so if your code compiles there, it should in the auto-grader as
well (but check anyway!). You are rate-limited to only four submissions every hour to the auto-grader
so as to prevent you from using it as your development environment and encourage proper debugging
skills.

https://grader.ece.vt.edu/

