
10/10/22, 8:56 PM Milestone 5: The Knowledge Base

https://canvas.vt.edu/courses/156146/assignments/1604894 1/5

Milestone 5: The Knowledge Base
| 10/3/2022

100 Possible Points
Offline Score:

N/A Add Comment

Details

Recall from the project overview that a knowledge-base is a set of clauses: facts and rules described by
prolog expressions. The purpose of this milestone is to develop the data structures to represent a
prolog clause and define the API for the KnowledgeBase class with a partial implementation.

Clause Structure
A clause in prolog represents either a fact or a rule and is composed of two parts: a required head,
consisting of a single expression, and an optional body, consisting of an expression list. This can be
simply defined as:

 struct Clause{

 ExpressionTreeNode head;

 ExpressionTreeNode body;

 };

Knowledgebase Class
The class KnowledgeBase will be used to hold the clauses that make up our vt-prolog program. The
programmer can add a clause to the knowledge-base using a member function call tell , and make
queries using a member function ask . The class also has members to determine the number of clauses,
called size and the ability to iterate through the clauses in arbitrary order using a constant iterator.

The C++ interface should be:

 class KnowledgeBase {

 public:

 typedef TODO Iterator;

 /// add a clause to the database

 void tell(const Clause & clause);

 /// return the number of clauses in the database

 std::size_t size() const;

 /// get an iterator to the first clause

 Iterator begin() const;

 /// get an iterator to one-past the last clause

https://grader.ece.vt.edu/

10/10/22, 8:56 PM Milestone 5: The Knowledge Base

https://canvas.vt.edu/courses/156146/assignments/1604894 2/5

 Iterator end() const;

};

where the TODO will be determined by what type you use internally to store the clauses but must
support forward iteration at a minimum. Note: the ask member will be implemented in a later
milestone.

To demonstrate how a programmer should be able to use the class, here is example code that iterates
through every clause in a knowledge-base kb and prints out the expression trees that make up the
clauses:

KnowledgeBase kb;

for(KnowledgeBase::Iterator it = kb.begin();

 it != kb.end();

 ++it){

 std::cout << it->head.toString() << " :- " << it->body.toString() << ".\n";

}

Instructions

Your task in this milestone is to create the initial KnowledgeBase module for VT-Prolog as described
above.

KnowledgeBase.hpp should define the classes Clause and KnowledgeBase , described above, in the
namespace vtpl .
These classes and functions should be implemented in the file KnowledgeBase.cpp .
The file KnowledgeBaseTests.cpp should contains Catch based unit tests for your KnowledgeBase
module.

As in previous milestones, you can define additional units of code (classes, helper functions) in
KnowledgeBase.cpp , but do not change the public interface of KnowledgeBase.hpp beyond that specified.

Remember to add these files in the appropriate place in the CMakeLists.txt file.

Steps to build and run the tests in the reference environment (after
vagrant ssh).
Note: you should be working primarily on your host system for development. These steps are just to
check the code in the reference environment, as well as test code coverage and memory safety.

To configure the build

cmake /vagrant

To run the build

https://grader.ece.vt.edu/

10/10/22, 8:56 PM Milestone 5: The Knowledge Base

https://canvas.vt.edu/courses/156146/assignments/1604894 3/5

make

or

cmake --build .

To run the unit tests

make test

or

cmake --build . --target test

The test output is placed in ``Testing/Temporary/LastTest.log. You can also just run the tests
directly:

./unit_tests

To run the memory checks on your unit tests.

cmake -DMEMTEST=TRUE /vagrant

followed by

make memtest

or

cmake --build . --target memtest

This should report no “definitely lost” leaks and no access errors. Look for

LEAK SUMMARY:

 definitely lost: 0 bytes in 0 blocks

or

All heap blocks were freed -- no leaks are possible

and

ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

To run your tests and check code coverage.

cmake -DCOVERAGE=TRUE /vagrant

https://grader.ece.vt.edu/

10/10/22, 8:56 PM Milestone 5: The Knowledge Base

https://canvas.vt.edu/courses/156146/assignments/1604894 4/5

followed by

make coverage

or

cmake --build . --target coverage

This will create a directory called Coverage_Report in the build directory. You can copy it back to your
host by doing cp -r Coverage_Report /vagrant . Open the index.html file inside it to examine the
detailed report.

To configure and run the build in strict mode (increased warnings, warnings become errors)

cmake -DSTRICT=True /vagrant

cmake --build . --target clean

cmake --build .

Note: you can also combine all the options into one build configuration, i.e.

cmake -DSTRICT=True -DCOVERAGE=TRUE -DMEMTEST=TRUE /vagrant

cmake --build .

cmake --build . --target test

cmake --build . --target memtest

cmake --build . --target coverage

Submission
You should add changes to your repository and push them to GitHub regularly to demonstrate
progress. When you are ready to submit your assignment:

1. Tag the git commit that you wish to be considered for grading as “m5”.

git tag m5

or

git tag m5 COMMIT

where COMMIT is the commit id you wish to tag.

2. Push this change to GitHub

git push origin m4

If you need to tag a different version of your code simply create and push a new tag appending a full
stop followed by a monotonically increasing number, e.g. m5.1, m5.2, etc.

https://grader.ece.vt.edu/

10/10/22, 8:56 PM Milestone 5: The Knowledge Base

https://canvas.vt.edu/courses/156146/assignments/1604894 5/5

Be sure you have committed all the changes you intend to. Before the milestone due date it is a good
idea to re-clone your repository into a separate directory and double check it is what you intend to
submit. Failure to complete these steps by the due date will result in a failed submission.

Milestone Assessment
Milestone 5 will be assessed according to the following criteria.

Your code compiles in the grader/reference environment 1 point

Your tests pass 1 points

Your tests show no memory errors 1 points

Your code coverage 5 points

Your code compiles in strict mode 1 points

Your code compiles with instructor tests 1 points

Your code passes instructor tests 20 points

Instructor tests show no memory errors 5 points

Note, if your code does not build in the reference environment you will receive no points. Correctness
is determined by the proportion of instructor unit tests that pass. Code quality will be assessed in this
assignment by ensuring your code compiles cleanly, with no warnings, using the strict mode specified
above, there are no memory errors (leaks, use before initialize, etc), and proportion of your tests that
cover your code (code coverage), which should exceed 98% of lines.

Your milestone can be checked in the auto-grader (https://grader.ece.vt.edu) . The auto-grader uses the
exact same environment as the reference so if your code compiles there, it should in the auto-grader as
well (but check anyway!). You are rate-limited to only four submissions every hour to the auto-grader
so as to prevent you from using it as your development environment and encourage proper debugging
skills.

https://grader.ece.vt.edu/

