
Evaluating the quality of ML classification algorithms for 17 different classifiers

from Spark ML, Keras, and Scikit-learn to detect  or minimize ML bugs at an early

stage before a model is deployed. This can be achieved by testing the Code, the

Model, and the Data and evaluating the individual classifiers using ML quality

attributes using three popular classification datasets

● The goal is how open-source ML systems should be tested using the state of art

solutions i.e model behavioral testing to build user confidence in using these

systems in operational systems

The implementation of th project requires addressing several
questions

Our objective is to determine ways to improve ML systems quality  by testing the data,

model, and code using quantitative and qualitative metrics. These metrics are

performance, reproducibility, correctness, robustness, explainability. Therefore,
the experimentation(implementation) must be able to answer the following
questions. Hence, you need to think how to design to address each question

● What are the most appropriate or ideal classifiers for the problem at hand, what

are the most effective evaluation metrics, and what makes the classifier perform

best?

○ Precision, Recall, Accuracy, ROC, confusion matrix, classification report

● Which classifiers are robust enough for data transformations such as data

shuffling of the training instance, adding adversarial examples, and scaled data?

Or Which classifier is robust to slight changes in the input data or for synthetic

datasets? Also,

○ What are the main factors or parameters that contribute to sensitivity?



● What are methods or model parameters(if any) to make the black box
decision-making process more explainable and which classifier output is

explainable and interpretable? i.e

■ Explainability in their native form (without using any explainability tools)

and using explainability tools(SHAP and LIME)

■ For example, decision making of decision tree is easy to

understand at a high-level(if-else statement)

■ How do the input features contribute to the model output?

● What are the main factors/parameters/methods that enhance ML reproducibility

and why is model reproducibility difficult to achieve? And

○ Which classifier is reproducible and why?

● What are the most appropriate classifiers,  ideal performance metrics for the

raw data (without any transformation), unnormalized data(cleaned and
transformed data but not normalized), normalized data(cleaned,
transformed, and normalized),  and imbalanced data?

● Which combination of qualitative and quantitative metrics: performance,

robustness, correctness, reproducibility, and explainability should ML

practitioners consider or give priority to getting a holistic view of the model

behavior before they deploy a model?

○ Why does accuracy alone not provide a complete picture of the model?

○ Is it possible to tell how each of the metrics correlates with the classifiers?

■ For example, does a decision tree classifier emphasize robustness

over explainability?

● Do we get the same results using various classification models by applying the

same data processing, the same or similar model parameters/hyperparameters,

and other settings remaining the same?

○ We need to provide valid reasons for both yes and no answers

● What are the unique challenges of model behavioral testing when applied to

classification models from Scikit-Learn, Keras, and  Spark ML?

● How can we adjust the workflow to handle data and concepts drifts?



○ It is possible that data and concepts, i.e the target instance may change

over time and affect the quality of the ML system (model quality), for

example, the prediction power. What are the best practices to minimize

this effect?

● The analysis must be performed between classifiers within the same library and

between libraries(focus should be here). For example,

○ Scikit-Learn linear SVM with other classifiers in Scikit-Learn and with

Spark ML Linear SVM classifiers

○ We have 17 classifiers/algorithms to be evaluated or analyzed

■ Spark ML  = 8,  Scikit-Learn = 8,  Keras =1
Tools and Technical composition

● Programming Language and IDE: Python, Jupyter Notebook

● Development OS: Ubuntu ( as long we using Juyper no problem)

● Development Approach: Test-Driven Development
● Program constructs: Classes and Functions (I love functions)
● Required skillsets: the project is quite challenging

○ Someone who have done projects in:

○ ML, ML Testing and  quality assurance,EDA, ML Workflow
orchestration(tracking), ML Model Behavioral testing ,etc

● ML model properties to be evaluated practically
○ Performance, robustness, reproducibility, correctness, explainability

and Interpretability
● ML Frameworks to used for the implementation: Spark ML, Scikit-Learn, and

Keras
● It is very crucial to clearly understand the differences between Model Evaluation

and Model Testing as well as ML evaluation and ML testing

○ The primary focus of this projecti model testing, not model evaluation

■ Model evaluation using performance metrics mainly depends on the

performance metrics of the model, whereas model testing is quite

far beyond that Writing Test Cases for Machine Learning systems -

Analytics Vidhya

https://www.analyticsvidhya.com/blog/2022/01/writing-test-cases-for-machine-learning/
https://www.analyticsvidhya.com/blog/2022/01/writing-test-cases-for-machine-learning/


Classification Algorithms

We have selected 16 classifiers that have the same mathematical intuition both in Spark

MLi.e PySpark  and Scikit-Learn. We also have one general classifier from Keras. We

want to evaluate the Keras classifier with the rest of the classifiers. The classification

algorithms are: Note each algorithm havs two version: 1 from Pyspark and 1 from

Scikit-Learn

● Linear SVC or SVM.SVC(2)
○ Max iterations, C = regularization strength, penalty(loss), fit

intercept,random state

● Logistic Regression(2)
○ solver, penalty, C (regularization strength), max iteration, random state

● Decision Trees(2) & Random Forest(2)
○ Max depth, number of estimators, impurity  measure, max features,

bootstrap technique, random state

● Gaussian Naive Bayes (2)
○ Smoothing, model type(Multi, Gaussian, Bernoulli)

○ The APIs do not provide many hyperparameters as it generalizes well

● GBTClassifier(Scikit-Learn)(1) and GBTClassifier (spark ML) (1)

○ Max features, number of estimators, max depth, learning rate, loss/loss

type, bootstrap technique, random state

● MLPClassifier(2)
○ hidden layer size, activation, solver, max iterations, learning rate, batch

size, alpha(regularization), random state

● One-vs-Rest(2)
○ estimator(baseline estimator), number of parallel jobs

● Keras Classifier(1)
○ Binary or multi-class general classifier, random state

● HyperParameter selection



○ The hyperparameters should be selected in such a way that they will

significantly contribute to the quality of MLmodels. Considering three to

four hyperparameters for each classifier seems reasonable.

○ The set of hyperparameters should be present equally in Scikit-Learn and

Spark ML. Otherwise, the comparison would not be reasonable

3 Datasets for the experimentation
We need to use three of them to reach on conclusion

● Titanic - Machine Learning from Disaster | Kaggle

● Pima Indians Diabetes Database | Kaggle

● Fashion MNIST | Kaggle

Components to be Implementation

Data Preparation and Feature Engineering
● Apply the same or similar methods for data processing for PySpark , Scikit-Learn

and  Keras  to evaluate the classifiers

○ Pandas as PySpark and Scikit-Learn have similar implementations

● The data preparation in Spark ML and Scikit-learn must be the same

○ We can use Pandas Dataframes or Spark DataFrames to

maintain the same data processing

● Use one data integriy checking tool to find issues in the data

● Great Expectation,  Data linter, DeepChecks,etc
● Explanatory Data Analysis also possible

Data clearning and feature engineering

● Data Cleaning tasks such as but not limited
○ Missing Values, Null values, Outliers, duplicates

○ Mixed data types in a single column

○ Unnecessary features for the model

● Data  transformations (not an exhaustive list)

https://www.kaggle.com/c/titanic
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/zalando-research/fashionmnist


○ Class imbalance, use

■ Oversampling and undersampling techniques

● Encoding categorical values

● Data normalization

○ To evaluate how a classifier is sensitive to normalized and

unnormalized data

● Feature Importance

○ Important for testing the robustness of the model

● Performa all the required data clearing , feature engineering

“You are free to handle this module in the manner that is most convenient for you, so

long as the data is clean and appropriate for the model. The data preparation technique

we use can have a big impact on the model output in many ways”

Testing: Data, Code, and Model Testing

Pre-Train Tests for Improving Data Quality: Data Testing
● Testing to catch bugs before we run the model

● Identify data-related bugs(issues) early in the pipeline

● Enhancing the quality of data before feeding it to the models by writing

assertions on its various features.

Example of checks that we need to perform (not an exhaustive list)
● Check the shape of the model output and ensure it aligns with the labels in the

dataset.

● Test output range and input range of the features, for example

○ For a binary classifier, the label in the dataset must be 2

● Check for label leakage between training and validation datasets

● Test data leak between train and test sets i.e to check duplicates

● etc

https://github.com/eugeneyan/testing-ml/blob/master/tests/tree/test_decision_tree_1pre.py#103


Post-train tests to test performance, robustness, correctness, etc( Model

Testing)

● Testing the trained model based on behavioral testing of ML to

● Ensure expected learned behavior is there, model performance, and

implementation is correct   Testing the learning program of the trained model

The following are the tests we need perform  to the trained model
● Minimum Functionality Tests or Adversarial testing

○ To see how the model would perform under edge cases, bias, noise, etc.

● Invariant Tests
○ Modify values of  less relevant features and check the prediction(↑↓)

● Directional Expectation Tests
○ Change the value of relevant or important features and check the

prediction direction(↑↓)

● Model evaluation to ensure satisfactory performance
● Often called model Inference testing

● Drifter ML can be a better library

In Invariant and Directional expectation tests the plan should be to test the

robustness of the model by changing both relevant and less-relevant features and

checking how the model reacts.

Model Pre-train and Post-train tests Clarification
● The pre-train and post-train tests vary from model to model. For example, here

are useful resources for decision trees and the Random forests model of
pre-train and post-train tests.

○ How to Test Machine Learning Code and Systems

● The pre-train and post-train tests are dependent on the type of data, the model,

the hyperparameter, the evaluation metrics, feature values, etc. Thus, use the

optimal set of tests to assure quality and reduce ML bugs that can result from

Data, Code, and Model

https://drifter-ml.readthedocs.io/en/latest/
https://eugeneyan.com/writing/testing-ml/


Code Testing
● To test the functionality of the individual functions are as expected and how the

various component communicate

○ Unit testing data processing, model training, evalaution methods, etc

● Overall, the goal of the test module is to test the Code + the  Learning Program

(Model) + Data to improve the quality of the entire ML pipeline.

● Testing Machine Learning Systems: Code, Data and Models - Made
With ML

Training and Evaluation and track the workflow
The objective is to construct, evaluate and tune the various models. In addition

you need to track the hyperparameters, visualizations, performance scores, etc

using MLflow.

● Baseline models
● Construct a baseline model without tuning model parameters

● Optimized models
○ Construct an optimized model with tuning such as Tuning

Hyperparameters, Important features, K-fold Cross-validation

● HyperParameters Tuning Method
○ GridSearchCV method to find the optimal set of hyperparameters

● Compare and contrast the optimized models using performance, robustness,
correctness, explainability, and reproducibility

● Summary of prediction accuracy of the optimized models
○ Accuracy, Classification report,  Confusion matrix, ROC, Recall, Precision

https://madewithml.com/courses/mlops/testing/
https://madewithml.com/courses/mlops/testing/


In-depth Analysis and Findings for Report Writing
The goal is to select a model that best fits the validation set using the qualitative and

quantitative ML properties. Practicallly we need the models using
● Performance Metric

○ Accuracy, classification report, confusion matrix, ROC Curve, and relevant

metric.

What is the best metric for the models and datasets
○ The right metric plays a crucial role in ensuring quality and reliability

● Reproducibility
○ The objective is how to get a reproducible model or the entire ML system

○ Intuitively, reproducibility is attained when we train and evaluate a model

using the same configuration

Possible ways to achieve reproducibility(not exhaustive list)
■ Setting a global seed value for the random_state seed parameter for the

train-test split and adjusting similar model parameters

■ Using the pickle object to save and load trained models

■ Workflow orchestration tools must integrated to ensure reproducibility by

tracking hyperparameters, performance scores, visualizations, model

pickle files , etc

■ MFlow would be the right candidate as it easily integrates with

Jupyter notebook + I have experience with that

Feel free to use any other tool or technique for controlling reproducibility
● Explainability

○ The goal is to understand how model decision-making (prediction) is made

and which feature contributes most to the model output.

■ LIME and SHAP would be a good candidate here

■ Explainable AI with TensorFlow, Keras and SHAP | Jan Kirenz

● Robustness
■ The goal is to measure how robust a model is to slight changes in the data

and parameters or data transformations

■ How the model reacts to a slight change in the data

https://www.kirenz.com/post/2022-06-17-explainable-ai-with-tensorflow-keras-and-shap/


■ Insights from the Invariant and Directional Expectation tests
■ Testing using synthetic data(modified data) could be also another

approach.

■ Shuffling the training and test data and see how the model reacts

■ Any random method to make data shuffle

● Correctness
● Do classification models predict the correct outcome?

● Use any appropriate metric for measuring the correctness of the classifiers

■ I am not sure how to measure and enforce correctness

ML Workflow Orchestration and Code Quality
● ML orchestration tools to automate and manage workflows and pipeline

○ Track hyperparameters, visuallization, performance scores

● Scripts to manage the various tasks (training, evaluation, feature engineering)

● Enforce coding standards to avoid code breakages

○ Linting tools to ensure code consistency such as pylint
○ For example, Jupyter Notebook extensions

■ To improve code structure, and adhere to coding standards

● Save trained model and cleaned data for later use

○ To distinguish between the raw data and the cleaned one.

● For ML workflow and individual task orchestration you can use your convenience

orchestration tool that can easily integrate with Juypter Notebook including

○ MLflow: An open-source platform for the machine learning lifecycle

■ My favorite one( I recommend you to use this one)
○ Apache Airflow

○ ZenML: Open-source pipeline framework that integrates all ML tools

○ Your favorite orchestration tools can be used, but they should be

open-source and compatible with the Juypter Notebook environment.

■ Because I need to reproduce the experiments for my final
thesis presentation(thesis defense)

https://mlflow.org/
https://airflow.apache.org/
https://zenml.io/home


Final  Deliverables

● Implementation code and report of at least 15 pages

● The implementation code and set of instructions on how to execute or reproduce

the work: Notebook files and python file for writing the scriprt

● Tool for report writing: LaTeX (overleaf) and using a word document is also fine

Report Writing Guidelines

● The description of the  report must focus on the various ML properties. For

example, how code, data, and model testing can improve the quality of ML

systems.

Should include the following core points

● Introduction about the rationale behind conducting the experiments

○ It is possible to explain the purpose of the experiment on 1 page

● A flowchart diagram to show the workflow and the integration of various

components: tools, algorithms, metrics, data processing, etc

○ This is useful to reflect the overall workflow of each experiment we

conducted and estimate the effort we invested.

● The report must entirely focus on the comparative analysis of the various

classification models and the rationals behind the classifiers

○ Detailed comparative analysis using the performance, reproducibility,
explainability, robustness, and correctness properties supported by

visualizations

○ What are the main contributions and impacts on industry and academia

○ Therefore, It is expected that 90% of the reports will be here

● In my opinion, 3750 words are enough to write a report for the experiments,

however, the number of pages can exceed 15 pages because

○ We need to include many visualization diagrams



● The bare minimum requirement for the number of pages for the report is 15. I am

saying the bare minimum requirement. At least I'm expecting 15 pages where

there will be a lot of visualizations in the report

Very Important to Consider

● At a very high level, the project seems simple as well easily attainable,
however, if you carefully go through all the instructions the task is
challenging and demanding.  The project is doable but could take a lot of
effort and time.

● Hence a Machine Learning Engineer with the following set of skills would be a

perfect fit for the task

○ ML LifeCycle, Model behavioral testing, model pre-train tests, model

post-train tests, Minimum Functionality Tests, Invariant tests,

Directional expectation tests, ML Software testing, Explanatory Data

Analysis,  ML Workflow Orchestration, and a solid practical experience

with how to measure performance, robustness, explainability,
correctness, and reproducibility of classification algorithms

○ How to use effectively classification models from Spark ML,
Scikit-Learn, and Keras and how these algorithms work internally.

● The in-depth analysis for the report must focus on performance, robustness,
reproducibility, explainability, and correctness

○ i.e which model/system is robust, reproducible, and explainable? And the

rationales behind the outcomes or

○ How reproducibiltity , explainability can be assured in ML systems?

● I often used the phrase "not exhaustive list" in many of my writings.

○ I wanted to give an example or a direction on how to tackle that specific

task. However, there are many tests or checks that should be taken into

consideration besides those mentioned.

○ You need to consider many possible scenario



● I am always online to clarify anything in the development process.  When there is

some misunderstanding. Do the following things accordingly

○ I encourage you to reach out to me at any time

○ Use the optimal approach in ML development and testing ML components

● I included some tools such as Drifter-ML and a few terms about testing

techniques such as model behavioral testing, Invariant testing, and model
pre-train tests for two main reasons

○ To give you a bit of information or direction

○ The whole thesis depends on these concepts, tools, methods, etc

● Again ML evaluation is different from ML testing
○ The focus of the work on testing where performance is one metrics

● The instruction must be followed AND READ THEM CAREFULLY

● COPYING CODE FROM THE INTERNET IS TOTALLY PROHIBITED !!!
○ This is because, I gave the task to one company before, but what they did

was just copy the code from the internet and they send it to me as draft.

● We have 17 classifier,  3 datasets from 3 machine learning libraries, and

many tests.

○ We need to write many test cases

● Refer to the links below whenever you get confused
○ I can fairly say that, many of the tasks are answered in the resources

● I need a draft in 2 days
● Due date: 27 at 12:00 CET(Central European Time)

Well Curated resources for Implementation

How to Test Machine Learning Code and Systems

Model behavioral testing, model pre-train tests, and model post-train tests of

classification models using the famous Titanic datasets

Checklist — Behavioral Testing of NLP Models | by Khuyen Tran | Towards Data

Science

Minimum Functionality Tests, Invariant Tests, Directional Expectation Tests

https://eugeneyan.com/writing/testing-ml/
https://towardsdatascience.com/checklist-behavioral-testing-of-nlp-models-491cf11f0238
https://towardsdatascience.com/checklist-behavioral-testing-of-nlp-models-491cf11f0238


How to Trust Your Deep Learning Code | Don't Repeat Yourself

An example of testing every piece of ML systems code to build user trust

MLOps with ZenML and MLFlow: how can we build a model training pipeline? —

a practical example | by Kattson Bastos | Aug 2022 | Medium

GitHub - eugeneyan/testing-ml: 🔍 Minimal examples of machine learning tests

for implementation, behavior, and performance.

Testing Machine Learning Systems: Code, Data, and Models - Made With ML

Testing ML Systems by testing the Code, Data, and Models

Effective testing for machine learning systems

Model testing and model evaluation, model pre-train and post-train tests

Open the Black Box: an Introduction to Model Interpretability with LIME and

SHAP - Kevin Lemagnen

Machine Learning Testing for Beginners - All in One Guide - TestProject

Minimum Functionality Test, Directional Expectation test, Invariant test

Testing your machine learning (ML) pipelines | Into the depths of data

engineering

Testing ML Code: How Scikit-learn Does It | by Moussa Taifi Ph.D. | Analytics

Vidhya | Medium

How to get absolutely reproducible results with Scikit Learn? - Stack Overflow

Jose Quesada - A full Machine learning pipeline in Scikit-learn vs in scala-Spark:

pros and cons

ML Model Interpretation Tools: What, Why, and How to Interpret - neptune.ai

Reproducible ML: Maybe you shouldn't be using Sklearn's train_test_split |

Engineering for Data Science

Article Review: The ML Test Score: A Rubric for ML Production Readiness and

Technical Debt Reduction by Google

What needs to be tested for ML systems(Code, Model, data, and features)

https://serokell.io/blog/machine-learning-testing

Behavioral Testing of NLP models with CheckList

https://krokotsch.eu/posts/deep-learning-unit-tests/
https://medium.com/@kattsonbastos/mlops-with-zenml-and-mlflow-how-can-we-build-a-model-training-pipeline-a-practical-example-6a5f24f5eefc
https://medium.com/@kattsonbastos/mlops-with-zenml-and-mlflow-how-can-we-build-a-model-training-pipeline-a-practical-example-6a5f24f5eefc
https://github.com/eugeneyan/testing-ml
https://github.com/eugeneyan/testing-ml
https://madewithml.com/courses/mlops/testing/
https://www.jeremyjordan.me/testing-ml/
https://www.youtube.com/watch?v=C80SQe16Rao&t=3405s
https://www.youtube.com/watch?v=C80SQe16Rao&t=3405s
https://blog.testproject.io/2022/01/17/machine-learning-testing-for-beginners-the-all-in-one-guide/
https://intothedepthsofdataengineering.wordpress.com/2019/07/18/testing-your-machine-learning-ml-pipelines/
https://intothedepthsofdataengineering.wordpress.com/2019/07/18/testing-your-machine-learning-ml-pipelines/
https://medium.com/analytics-vidhya/testing-ml-code-how-scikit-learn-does-it-97e45180e834
https://medium.com/analytics-vidhya/testing-ml-code-how-scikit-learn-does-it-97e45180e834
https://stackoverflow.com/questions/52746279/how-to-get-absolutely-reproducible-results-with-scikit-learn
https://youtu.be/v7EX5aYE0xM
https://youtu.be/v7EX5aYE0xM
https://neptune.ai/blog/ml-model-interpretation-tools
https://engineeringfordatascience.com/posts/ml_repeatable_splitting_using_hashing/
https://engineeringfordatascience.com/posts/ml_repeatable_splitting_using_hashing/
https://laszlo.substack.com/p/article-review-the-ml-test-score
https://laszlo.substack.com/p/article-review-the-ml-test-score
https://serokell.io/blog/machine-learning-testing
https://amitness.com/2020/07/checklist/


An excellent introduction to model behavioral testing

Writing Test Cases for Machine Learning systems - Analytics Vidhya

Model pre-train and post-train tests for scikit-learn using Pandas.

https://github.com/Khushee-Upadhyay/Testing_Demo_Project

Pre-train and Post-train tests for an insurance prediction problem

Testing Machine Learning Systems: Code, Data, and Models - Made With ML

An Excellent resource for Testing ML Code, Data, and Model

PyTest for Machine Learning — a simple example-based tutorial | by Tirthajyoti

Sarkar | Towards Data Science

How to use Pytest from scikit-learn to test features(data) and models

How To Unit Test Machine Learning Code - KDnuggets

How to Test Machine Learning Models | Deepchecks

Model Evaluation vs. Model Testing differences, Robustness, Interpretability,
Reproducibility, Correctness, Testing Trained Models, Invariance Tests,
Directional Expectation Tests, Minimum Functionality Tests

Beyond Accuracy: Behavioral Testing of NLP Models with CheckList - ACL

Anthology Foundation of Model Behavioral testing

https://www.analyticsvidhya.com/blog/2022/01/writing-test-cases-for-machine-learning/
https://github.com/Khushee-Upadhyay/Testing_Demo_Project
https://madewithml.com/courses/mlops/testing/
https://towardsdatascience.com/pytest-for-machine-learning-a-simple-example-based-tutorial-a3df3c58cf8
https://towardsdatascience.com/pytest-for-machine-learning-a-simple-example-based-tutorial-a3df3c58cf8
https://www.kdnuggets.com/2017/11/unit-test-machine-learning-code.html
https://deepchecks.com/how-to-test-machine-learning-models/
https://aclanthology.org/2020.acl-main.442/
https://aclanthology.org/2020.acl-main.442/

