
CSE/IT 107L Lab 9: File I/O and Exception Handling

2 Exercises

Using with

If you manually close the file by calling .close(), the file may not be closed in exceptional
circumstances. Always use the with statement when opening files in Python. See prelab9 for
more detail.

Exercise 2.1 (word_count.py).
Write a program that takes in a filename and string as input. Then print how many times that
string appears inside the chosen file. If the file does not exist, continue asking for a filename
until one is given that exists. Use your source code file as test input.
Make sure to test files with that contain the same word multiple times.

1 $ python3 word_count.py
2 Please enter a filename: word_count.py
3 Please enter a string to search for: print
4 The string 'print' appears 102 times in the file 'word_count.py'

Exercise 2.2 (design, simplediff.py).
Before attempting to code this problem, create a file design that contains some analysis of how
you think the problem will be solved. Examples include but are not limited to: a flowchart of
events in the program, pseudocode, or a step-by-step process written in plain English. If you
choose to scan your design, please make sure that it is legible.
Write a “diff” program that prints out the differences, line by line, of two files. Your program
should ask the user for the names of two files, then print the differences between them. Follow
the format output as shown below. Make sure to use proper error handling techniques for file
I/O.
Assume all files have the same number of lines. The following output shows the output of the
files file1.txt and file2.txt.

1 $ cat file1.txt
2 John goes to work.
3 Keith and Kyle went to the Ensiferum concert.
4 Alice ate an apple pie.
5 Joe cut down a tree.
6 The dog jumped over the wall.
7 $ cat file2.txt
8 John goes to work.
9 Coral went to a Kesha concert.

10 Alice ate an apple pie.
11 Joe planted a tree.
12 The dog jumped over the wall.

4



CSE/IT 107L Lab 9: File I/O and Exception Handling

This is the result of running the script simplediff.py on the two files:

1 $ python simplediff.py
2 Enter file name 1 >>> file1.txt
3 Enter file name 2 >>> file2.txt
4

5 2c0
6 < Keith and Kyle went to the Ensiferum concert.
7 ---
8 > Coral went to a Kesha concert.
9 4c4

10 < Joe cut down a tree.
11 ---
12 > Joe planted a tree.

The 2c0 tag refers to where the difference occurred and can be read as line 2 character 0 (where
lines are 1 indexed and characters are zero indexed). Compare the output of your script to that
of the diff program by typing diff file1.txt file2.txt in your shell.

Exercise 2.3 (readscores.py).
Download the file actsat.txt provided on Canvas. It contains the following columns of
whitespace-separated data:

Column 1 2-letter state/territory code (includes DC)

Column 2 % of graduates in that state taking the ACT

Column 3 Average composite ACT score

Column 4 % of graduates in that state taking the SAT

Column 5 Average SAT Math score

Column 6 Average SAT Reading score

Column 7 Average SAT Writing score

You must open this file and generate a list of dictionaries containing each row of data. Please
use these keys for the dictionaries:

• "state"

• "act_percent_taking"

• "act_average_score"

• "sat_percent_taking"

• "sat_average_math"

• "sat_average_reading"

• "sat_average_writing"

For example, your code should process this two line file to form the following list of dictionaries.

5



CSE/IT 107L Lab 9: File I/O and Exception Handling

1 AK 27 21.2 48 517 519 491
2 AL 81 20.3 9 556 563 554

1 [{"state": "AK",
2 "act_percent_taking": 27
3 "act_average_score": 21.2
4 "sat_percent_taking": 48
5 "sat_average_math": 517
6 "sat_average_reading": 519
7 "sat_average_writing": 491
8 },
9 {"state": "AK",

10 "act_percent_taking": 81
11 "act_average_score": 20.3
12 "sat_percent_taking": 9
13 "sat_average_math": 556
14 "sat_average_reading": 563
15 "sat_average_writing": 554
16 }]

Exercise 2.4 (README).
For the following labs you will be required to create aand submit a README file.
A README file is a simple text file that contains basic information regarding the purpose
and use of the software program, utility, or game. README files often contain instructions or
additional help regarding the software it accompanies.
For this lab you must have the following in your README file::

• Purpose: Describes what each program does and what problem it solves. You can keep
this breif.

• Conclusion:

– What you learned during the lab? What new aspect of programming did you learn
from the lab? Be analytical about what you learned.

– Did pair programming help in solving the problems and completing the prelab? Did
you have problems with your budy?

– Did you work with your budy on the lab? What sections did you discuss? Did you
and your budy carry out a review session with each others’ code?

– Did you encounter any problems? How did you fix those problems?

– What improvements could you make?

The conclusion does not have to be lengthy, but it should be thorough. You will include the
README file with your submissions.

6


	2 Exercises

