PS0001 Computational Thinking AY 2022/2023
Thomas Peyrin

Project

Deadline: 11.11.2022 23:59 SGT

The project is an assignment that has to be completed in groups of 3 persons maximum (the persons have
to be in the same lab group). This project will test your ability to use Python in a more concrete and complex
setting than what you were used to during the tutorials/lab sessions. Also, it will improve your ability to work
as a team when having a project to complete. The goal of the project is to program the game Connect4 in
Python (the pop out version), with a simple user interface and game display, and where a human can play
against either a human or a computer player.

Very Important!!! Please follow the instructions below. Projects that will not strictly follow these
instructions will risk getting big grade penalty.

e The Python script to execute the program must be in your project repertory and named exactly connect4.py
(no uppercase letter). For submission of your project on NTU Learn, please create a zip archive from your
project repertory, name the archive according to your matric number (i.e. <YourMatricNumber>.zip),
and upload it on NTU Learn. If two or three people are in your group, simply separate the matric numbers
with an underscore character.

e The submission system automatically closes exactly at the deadline. Hence, after that, if you didn’t
submit, you will get 0 point for your project. You can update your submission as many times as you
want on NTU Learn, only the last submission will be taken into account. Thus, I advise you to submit
an earlier version much before the deadline, to be sure you won’t end up with no submission at all.

e Only one person of your group submits the project on NTU Learn. Do not submit the same project for
all your group members.

e Make sure your project works properly (i.e. the program doesn’t output errors). If errors are output
during the test of a functionality of your project, this functionality will be considered as not working at
all.

¢ Do not copy any code (or part of) from other groups, from implementations available online, from previous
years, or from any code that is not yours.. Special software will be run to check for such cheating cases.
If you are caught copying code, you will risk serious consequences (see course guidelines). Also, do not let
other groups copy your code, as both groups with similar code will get 0 mark for the project (regardless
on who copied on who). Note that every year several groups get 0 mark (or worse: academic misconduct)
because of plagiarism. To avoid any possible issues, I would strongly advise you to not collaborate among
different groups.

e Your Python script must implement the functions check_victory, apply-move, check_move, computer _move,
display_board and menu (see below). Make sure you don’t miswrite the functions names, or make an
error in the input/output that are expected for these functions. The grading will be mostly be based on
these functions.

¢ You can find on NTU Learn a file test . py to pre-test your functions (simply copy the file in your repertory
and run it). It should output OK for all tests (note that getting a OK does not necessarily mean your
function is working perfectly). You can also find on NTU Learn a skeleton of the connect4.py file.

¢ You should not have any Python code that does not belong to a function (i.e. all your Python code must
be inside a function), except the module imports at the very beginning, and except the call to the menu
function, which will start your program. You can define and use your own functions in addition to the
existing ones.



1 Connect 4 game

Connect4 is a two-player game in which the players first choose a color and then take turns dropping colored
discs from the top into a 7-column, r-row vertically suspended grid. The pieces fall straight down, occupying
the next available space within the column. The object of the game is to connect four of one’s own discs of
the same color next to each other vertically, horizontally, or diagonally before your opponent (description taken
from wikipedia: http://en.wikipedia.org/wiki/Connect_Four).

Figure 1: Example of a Connect4 game. The yellow player wins with 4 consecutive yellow discs in the second
row.

For those who don’t know the game, I would advise you spend ten minutes to try it on this website:
http://www.mathsisfun.com/games/connect4.html

You will have to implement the pop out version of this game: during each turn, instead of adding disks, a
player can otherwise choose to “pop out” one of its own disk on the bottom row (i.e. only a single column of
the board is impacted). Popping a disc out from the bottom drops every disc above it down one space, changing
their relationship with the rest of the board and changing the possibilities for a connection.

2 Objectives

The objective of the project is to write in Python a working Connect4 (pop out version) program that allows
a human player to play Connect4 against another human player or against a computer player through a menu.
Be VERY careful to implement EXACTLY the game rules (test your program thoroughly and try to think of
all the special cases). The program must allow the user to configure:

e the number of rows of the board (i.e. the number of rows r and the number of columns ¢ of the board,
the default values must be r = 6). You can set minimum and maximum values if you want. Note that
the number of columns is not configurable and always set to 7.

e the type of the two players (human or computer), and the difficulty level in case of a computer player
(two levels).

You have to use the skeleton file connect4.py provided on NTU Learn. Moreover, note that every time you
add a feature to your program, you should test it thoroughly before continuing. Testing your program only at
the very end is the best way to render the bug hunting close to impossible !

3 Three steps to complete the project

3.1 1st step: implementing the skeleton of the project and the user interface

The first step in a programming project is perhaps the most important one: before writing any Python code,
you should think about the functions you will need to implement, their input/output, their goal, the overall



structure of the entire program. This step has already be done for you and you have to use the skeleton file
connect4.py provided on NTU Learn. Make sure you understand what each function is supposed to do and
try to get an idea of how the entire program will be organised. In short, you have a menu function to handle
the interface with the user, and one function for each filter/transformation functionality to be added.

3.1.1 Data Structure for the game.

In order to represent the board in Python, you can use a simple data structure: a list of 7 x r integers (r being
the configurable number of rows of the board), where 0 represents an empty slot of the board, 1 stands for
disc from player 1 and 2 stands for a disc from player 2. The disc located at row ¢ and column j of the board
(starting the counting at 0) is therefore represented at index 7 x i + j of the list. The row 0 will correspond to
the bottom row of the board, and the column 0 will correspond to the left-hand side column of the board.

Note that a move from a player can then be described by a column index (an integer € [0,...,6]) and a
Boolean value (True or False) representing the decision of the player to perform popup action (True) or not
(False).

3.1.2 Skeleton of the project.

You will have to implement the following functions for your project. Note that board will denote a list of integers
representing the board, turn will denote an integer representing who’s turn it is to play (thus equal to either 1
or 2).

e check move(board, turn, col, pop). This function’s role is to check if a certain move is valid for a
certain board. It will take an integer list board, an integer turn, as well as an integer col (that will represent
the column index of the disc played, counting starting at 0) and a Boolean value pop (that will represent
the decision of the player to pop a disc or not) as inputs. It returns a boolean value False if the move
is not allowable, and it return True if the move is allowable. Carefully check the game rules to properly
implement this function.

e apply move(board, turn, col, pop). This function’s role is to apply a certain move to a game. It will
take an integer list board, an integer turn, as well as an integer col (that will represent the column index
of the disc played, counting starting at 0) and a Boolean value pop (that will represent the decision of
the player to pop a disc or not) as inputs. For this function, you can assume that the move is always an
allowable one. It returns an updated board according to that move.

e check victory(board, who_played). This function’s role is to check if a victory situation has been
reached. It will take an integer list board and an integer who_played (that will represent which player
played the last move) as inputs. It will return:

— 0 if no winning situation is present for this game
— 1if player 1 wins
— 2 if player 2 wins

e computer move(board, turn, level). This function’s role is to ask for the computer to make a move
for a certain board. It will take an integer list board and an integer turn as inputs, as well as an integer
level that will represent the level of the computer opponent. It will return two integers: first an integer
col (that will represent the column index of the disc played, counting starting at 0) and a Boolean pop
(that will represent the decision of the player to pop a disc or not).

e display_board(board). This function’s role is to display the board. It takes an integer list board as
input and does not return anything.

e menu(). This function’s role is to handle the menu interface with the user via the console (the keyboard
can be used by the user to type his game parameters, which moves he would like to make during the
game, etc.). It is basically the director function that will interact with the user and distribute the work
to all functions. It should be the main function that is called in your Python script. It takes no input and
doesn’t output anything.



3.2 2nd step: implementing the rules of the Connect 4 game
Once the skeleton ready, you can start writing the internals of the functions that will implement the game.

Display. The display is handled in a separate function display_board, that can be called every time a new
move was made by a player. A simple option can be to simply print the board in the console. Yet, to make
it easier for a human player to see the game, you can also use a more graphical display if you prefer (both are
considered acceptable).

Making a move. Note that a move from a player can be described by a column index (in order to specify
which column will be played) and a Boolean value (in order to specify if the player would like to insert a disk
or pop out a disk). Your menu function should error-check that the user did not try to enter a column value
beyond board limits, or a non-Boolean value for the pop. Once the move chosen, your program must check if
the move is valid and apply it only if it is indeed a valid move. Then, once the move applied, it must check if a
victory situation is reached. This entire sequence repeats until the game is over, or the user would like to quit
the game.

Checking victory. In order to check if a victory situation is reached, you must check if 4 consecutive discs
of the same color are present in the board (horizontal, vertical or diagonal). Be careful, it might happen a
situation where more than 4 consecutive discs of the same color are present, which obviously also leads to a
victory of this player. Besides, if a pop out move was done, it might happen that both players get 4 consecutive
discs of the same color aligned. In that case, the player who did the move will loose.

Once this entire second step is fully implemented, you should be able to play human versus human with
your program. Do not start the third step before this second step is fully functional (test several games, try
unusual situations to make sure there is no bug in your program).

3.3 3rd step: implementing the computer player
The last step of this project is to implement a computer player with two levels of quality.

Level 1: random computer player. To start, program a trivial strategy: each time he will have to play,
the computer player will randomly choose a move among all the possible random moves (column and pop out
choices). You can test that this player is easy to beat.

Level 2: medium computer player. Program a computer player that will necessarily play a move that leads
to a direct win for him if such a move exists. If no such move exist, it will avoid to play a move that leads to a
direct win for his adversary in the next round (if such a move exist for the adversary). If again no such move
exist, the computer player will simply pick a random valid move.

Level 3 (optional): hard computer player. You can help the computer player to take smarter decisions,
whenever there is not an obvious move to do (like a direct win or avoiding direct loss). For that, instead
of letting him choose a random move, you can assign a grade to each possible move, for example by giving
points depending on the disks aligned (100 points for each 3 consecutive same color disks, 10 points for each 2
consecutive same color disks, etc.). You can use negative values for the opponents disks. Eventually, make the
move that maximizes the grade. This will make sure your computer player will try to get his disks aligned as
much as possible, and avoid having the opponents disks aligned.

Level 4 (optional): ultra hard computer player. You can implement a Min-Max player, see Section below.



4 If you want to go further ...

This section proposes some possible extensions for your project. Note that these extensions are here if you
would like to get extra challenges for your project, but they will not participate to the final grade.

4.1 Min-Max computer player

A much better computer player can be implemented by using the so-called min-maz algorithm. The goal of the
min-max algorithm is to minimize the possible loss for a worst case scenario, or in other words it will
look for the move which leaves the opponent capable of doing the least damage.

It is an algorithm, usually implemented with a recursive function, that will basically go through all
possible moves of the two players (like a search tree), up to a certain maximal number of moves (called the
maximal depth d;,q.). More precisely, in order to decide what move to make, the computer considers all of
its possible moves (depth d = 1), then for all these moves he will considers all of the possible moves from the
opponent (depth d = 2), and for all these moves it will consider all of its possible moves (depth d = 3), etc
...up to a certain maximal depth d,,,, (no move will be searched at a depth d > d,,4,). This search is like
a tree, as depicted in Figure 2: the root node of the tree is the current state of the game, and each branch
from this node represents a potential move from the player, creating new nodes (called subnodes, aka new game
states). New branches are then starting from these nodes to represent the possible moves of the opponent, and
so on and so forth.

: —0__
2 B~
0 0.0 ©
B B B
00 60 O

Figure 2: Example of a min-max search tree. The black numbers on the left represent the current depth in the
search tree (depth 1, 3 and 5 are MAX steps, while depth 2 and 4 are MIN steps). The number in the node
represents the value of that node, and the red arrows represent which value was passed to higher nodes, thanks
to the min-max algorithm.

5

Now, everytime a move has been considered at depth d, the computer will evaluate the quality of the current
game: if he wins (there are 4 consecutive discs of his color), then he gives 10 points to the value of this move.
In contrary, if he looses (the adversary has 4 consecutive disks of the same color), then he gives -10 points to
the the value of this move. Of course, once a victory situation has been reached at a depth d, there is no need
to continue considering further moves at depth d + 1 since the game is over. If no victory situation is attained,
then the algorithm continues to search at depth d 4 1, or gives the value 0 to the current move if depth d,,q,
is already reached.

At depth 1, the value of a node is the maximal value of his subnodes (max{0, —10} = 0). At depth 2, the
value of a node is the minimal value of his subnodes (min{0, 10} = 0 and min{10, 10, —10} = —10). At depth 3,
the value of a node is again the maximal value of his subnodes (max{0} = 0, max{10} = 10, max{—10,10} = 10
and max{—10} = —10), etc. Alternating the max and min phases, the computer eventually chooses the move



that gave him the maximal value at depth 1 (in our example from Figure 2, the computer would choose the
move on the left branch in depth 1, since it is the move that provides the maximal value 0).

You can find more information and even some pseudo-code for the min-max algorithm on Wikipedia: http:
//en.wikipedia.org/wiki/Minimax , and especially watch the animation that shows an execution example of
the algorithm for a depth of 4 http://en.wikipedia.org/wiki/File:Plminmax.gif

The difficulty level of the computer player is directly correlated to the maximal depth d,,q.: the deeper you
check the moves, the better will play the computer. A computer player with a depth of 4 should take a few
seconds to play, and is generally good enough to beat a human player. Interestingly, the Connect4 game has
been solved (which means that the entire tree of all the possible moves can be searched) when the condition
7+ ¢ < 15 is fulfilled. In that case, the computer will always win if he is the first to play.

4.2 Other features

Here are some potential extra features ideas that you can try to implement (again, this will not be graded):

e more players | Patch your program so one can play with 3 or 4 players.

e add a coin toss in the beginning of the game to decide who will start

e add a timer to force slow users to play fast (if they don’t respect the timer, then play a random column)
e allow the user to save/load a game

e allow the human player to go back one step (or more), so that he can continue his game even if he made
an obvious error

e give hints to the human player (by first running a ”transparent” computer player and checking what would
have been the choice of the computer)

e a better artificial intelligence: implement a better computer player, for example by computing a heuristic
function, as explained for example in http://www.roadtolarissa.com/connect-4-ai-how-it-works/.
A simple and efficient way to do it, is to give 1 point for each pattern of 3 consecutive discs of the players
color (and of course remove 1 point for such patterns of the opponent color).

e improve the graphical display of the board: use textures, backgrounds, show where is the winning discs
line in case of a victory, add an animation of the discs falling inside the board when a player played, etc.

e user interface: let the user choose the option of the game in a menu (i.e. size of the board, number of
players, human/computer players, level of the computer players, discs colors, etc.).



