Q1 Support Vector Machines (60 Points)

Figure 1 shows a plot of the data in the file ‘HEIGHT-DATA.csv’. In this problem you will
learn a support vector machine (SVM) classifier on the same data. Implementing SVM from
scratch is non-trivial; so you will use sklearn’s svm package. Look it up to learn about it.
Specifically, in the class we only covered linear SVMs i.e. which can find a linear boundary. For
linear SVMs, sklearn’s svm package has a function ‘LinearSV(C’. In general, for sklearn, first
you create an object for a model (passing some parameters), and then call .fit() to fit the
model. You may go ahead with the default parameter settings, but playing around with
parameters such as maz_iter, C, and class_weight can come in handy. The parameter
class_weight helps you assign different costs for making mistakes while classifying a
particular class e.g. in practice one might be okay with misclassifying one class while
misclassifying another class could be disastrous. Please do not confuse class_weight with the
classifier weights that you're learning. class_weight specifies how costly it is to make error on
each class e.g. if it’s twice as costly to misclassify class 1 as compared to class 2, the class
weights for class 1 and 2 could be: 2 and 1 respectively, or 1 and 0.5, or 6 and 3 (only the
ratio matters).

(a) (20 Points) Using the default value for class_weight, train a linear SVM classifier

for the height prediction problem. Report the learned weights and bias. Once the
classifier has been learned (i.e. after you call . fit()), you may access several properties in
your model object. The weight and bias can be accessed through ‘model.coef_’ and
‘model.intercept_’. Plot the separating line on your data. Is it different from the one you
learned in assignment 27 If so, why?

(b) (40 Points) By changing the class_weight parameter, find a setting that classifies all
the points from ‘plus’ class correctly. To clarify, you are being asked to find a line
which is not allowed to make any error while classifying the ‘plus’ class but still needs
to minimize the errors for the ‘dot’ class, to the extent possible. Plot this new line and
report the values for weight and bias. Report the values for class weights.

[Hint 1]: Since you are dealing with two classes, the parameter class_weight would be
a dictionary object with two elements, with class labels as keys, and the corresponding
weights as values.

[Hint 2]: You are not required to write a script to figure out the class weights to get
all examples from ‘plus’ class right. Once you have implemented part (a), you can play
around with class_wetights, plot the line and visually see when the last ‘plus’ falls above
the line. Another hint: Since the ratio of class weights is what actually matters, you may
fix one weight and change the other.

9.5

A Kids who grew to height >= 2m
A v Kids who grew to height < 2m
°| A _
A A y 3
851 AAA MR, i
A A A an A
Ada AdL L4
8t 1“‘ ‘ A A A |
N t‘ v
2 a4 A “‘A‘
%7.5- “;“; 'y “A‘ N
T A N A Y; v
AY v
7 B v w ‘Y v % - Y
x ¥ . AT .
6.5 vy -~ v .
v YV V
v wYy M
6 v W i
v \A 4
5.5 | 1 |
-9 0 5 10
Feature 1

Figure 1: Training data for the height prediction problem

