A. Possible Working Algorithms
1. Temperature Sensor
Initialize the LCD {Monitor the temperature from the
temperature sensor
{If (temp<set value) {check the water content
{If (water content<set) switch ON the motor and send the info.
to smart phone ELSE

{Motor is OFF}}}

2. Proximity Sensing
X[i—1] = X][0]

I[i-1]=0

loop 1:
DIi] = X[i] - X[i - 1]

Is (ABS (D[i]) greater than DT)?
true: I[i — 1] + D[]
else: I[i] = I[i — 1]

Is (I[i] > IT)

true:



Object detected

I[i — 1] = I[i]

else:
Object not detected
I[i-1]=1[i]*L

a. Parameters
IT = Integration threshold
DT = Derivative threshold
L = Leakage factor
X[i] = current sample point
X[i — 1] = previous sample point
D[i] = Derivative
I[i] = Integral of Derivative

I[i — 1] = Previous Integral of Derivative

3. Ultrasonic Distance Sensor
//[Hookup HC-SR04 with Trig to Arduino Pinl0, Echo to
Arduino pinl3

//Maximum Distance is [ --- ] cm



#define TRIGGER_PIN10
#define ECHO_PIN13

#MAX_DISTANCE [ -]

New Ping Sonar (TRIGGER_PIN, ECHO_PIN,
MAX_DISTANCE);
float duration, distance;
void setup ( ){
serial begin (9600);
by
void loop ( ){

duration = sonar.ping ( );

#Determine distance from duration

#Use 343 metres per second as speed of sound

distance = (duration/2)*0.0343;

/Isend results to Serial Monitor



Serial.print (“Distance = "):

Figure 4B. Architecture of Ultrasonic Distance Sensor

a. Parameters
VCC - 5 volt power connection
TRIG — Trigger pin (input)
ECHO - Echo pin (output)

GND - Ground



Lco

[T

rear T
|G'RS 13,4360

L

88 #3. szuszmun

F

JH z]r..:.l olafalls .'i:.z

Ll Le.l o] TEMP
.A
° |
-; o
1
;] Gas
|
.ﬂj
-
°
.

' O CHEEEZ

o1 o

IR SENSOR1

——

Virtual Terminal

Simulated Circuits

sl

OUST GEW: 0. 24
AIR QTY 12, 762v

o= IRSENSOR2 |

i

Iy

BCEeT

fiies

88Y p§. ssmzanss

gan ;l:.:. lalelolkds

POWETA

Virtual Terminal

—

"
= oﬂ-

. e

—IRSENSORY |

IR SENSOR2

Q1

=2

i

D1
LEC-vELOW

=

Simulated Circuits




Pick and Place function

Boovoor~rwnr

el
A WNBE

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

def pick_and_place(setup, product, target_picks=-1, retries=5):

If not pickit_is_running():
print("Pickit is not in robot mode. Please enable it in the web interface.™)
halt()

before_start()
pickit_configure(setup, product)

goto_detection()
pickit_find_objects_with_retries(retries)
pickit_get result()

picks =0
while True:
if not pickit_object_found():
# There are no pickable objects, bail out.
break

# Compute bin_entry, pre-pick, post-pick and bin_exit points.
compute_extraction_path()

If pickit_is_reachable(PickitPick, BinEntry, PrePick, PostPick, BinExit):
# Object is pickable! Attempt pick.
pick_success = pick()
if pick_success:
picks +=1
done_picking = target_picks > 0 and picks == target_picks
if done_picking:
# Target picks reached. Place without further detections.
place()
break
else:
# Target picks not reached. Place and detect next object.
goto_detection()
pickit_find_objects with_retries(retries)
place() # In parallel to detection, saves cycle time.
pickit_get result()



38
39
40
41
42
43
44
45
46
47
48
49
50
51

else:
# Picking failed, skip place and detect next object.
on_pick_failure()
goto_detection()
pickit_find_objects_with_retries(retries)
pickit_get result()

else:

# Object is unreachable, get the next detection, if any.

pickit_next_object()

pickit_get result()

after_end()

return picks



Flowchart

?

before_start and
application initializatio

n

J

A

r R
goto_detection and | _
trigger object detection

. J

WV

WV

reachable
object?

=

next object ]

[ on_pick_failure ]
A

pick
success?

no

goto_detection and
trigger object detection

Y

| place \

[ after_end ]




The lines that differ with respect to the are highlighted
above, and implement the following additional features:

« The ability to not only pick all objects (the default), but also to specify a target
number of picks.

« Some robot tools have the means to measure pick success. When this is
available, cycle time can be optimized by skipping the place motion on pick
failure, and instead proceed to trigger a new object detection.

« Wrap the logic in a pick _and place function, so it can be reused more easily
and with less code duplication. It outputs the number of successful picks, and
takes as inputs:

o Required: the Pickit , setup and product.

o Optional: target picks, which defaults to -1 (pick all); and retries, which

denotes how many times to retry object detection when the
IS not empty, but no objects are detected.

Application-specific hooks

The pick and place function requires the following application-specific hooks to

be defined. Click on the entries below to expand them and learn more about their
default implementation and behavior:

before start

# Action performed once before starting pick and place.
def before_start():
gripper_release()

This hook is executed once before starting to pick and place. It’s recommended to
add logic required to bring the robot to a sane configuration before starting to pick
objects. This can be especially useful when the robot program was previously
interrupted at mid-run.

By default, it makes sure the gripper is open to prepare it for picking an object.


https://docs.pickit3d.com/en/latest/robot-integrations/robot-independent/pick-and-place-simple.html#pick-and-place-simple-logic
https://docs.pickit3d.com/en/latest/documentation/configuration/index.html#configuration
https://docs.pickit3d.com/en/latest/documentation/setup/index.html#region-of-interest
https://docs.pickit3d.com/en/latest/documentation/setup/index.html#region-of-interest

goto_detection

# Move the robot to the point from which object detection is triggered.
def goto_detection():
movej(Detect)

This is a motion sequence that moves the robot to the point from which object
detection is triggered. For simple applications, this typically corresponds to a
single waypoint.

Some applications using a robot-mounted camera might require a non-
constant Detect point. For instance, when a bin is wider than the camera field of

view, multiple detection points are required to fully cover it.

compute_extraction_path

When picking from shallow bins, or in non-bin picking applications, it’s typically
sufficient to use a three-point extraction path PrePick — PickitPick — PostPick.

# Compute pre-pick and post-pick points.
def compute_extraction_path(PickitPick, pre_pick offset=100,
post_pick_offset=100):

PrePick = PickitPick * Pose(0, O, -pre_pick_offset, 0, 0, 0)

PostPick = PickitPick
PostPick.z = PostPick.z + post_pick_offset

More precisely the PrePick is chosen such that the approach motion is aligned
with the object, while PostPick is chosen for a straight-up retreat (which makes it
less likely to collide with obstacles like the bin).

When picking from deep bins, a five-point extraction path is preferred, which is
similar to the above, but with the addition of BinEntry at the beginning of the path



and BinExit at the end. These points are vertical translations
of PrePick and PostPick, respectively, as shown below.

# Compute BinEntry, PrePick, PostPick and BinExit points.
def compute_extraction_path(PickitPick, bin_entry z=300, pre_pick_offset=100,
post_pick_offset=100, bin_exit_z=300):
PrePick = PickitPick * Pose(0, 0, -pre_pick_offset, 0, 0, 0)

PostPick = PickitPick * Pose(0, 0, -post_pick_offset, 0, 0, 0)

BinEntry = PrePick
BinEntry.z = bin_entry z

BinEXxit = PostPick
BinExit.z = bin_exit_z

The first path segment performs bin entry in a safe way: It brings the tool
to BinEntry and descends vertically to PrePick. The same concept is applied to

the last path segment ( PostPick to BinExit), which exits the bin. The
parameters bin_entry z and bin_exit z are user-defined, and should always be
larger than the bin height.

The user can decide which path to use, and then modify the other parts of the
program accordingly. In particular, it will affect the argument of the

function pickit_is_reachable() and the move commands inside pick().

pick

# Sequence for performing the picking motion:

# - Starts and ends at AbovePickArea, a point reachable in a collision-free way.
# - BinEntry --> PrePick: Linear move along the Z direction to enter in the bin.
# - PrePick --> PickitPick: Linear approach to the pick point.

# - A grasping action.

# - PickitPick --> PostPick: Linear retreat away from the pick point.

# - PostPick --> BinExit: Linear move along the Z direction to exit the bin.

def pick():


https://docs.pickit3d.com/en/latest/_images/pick-sequence-5-point.png
https://docs.pickit3d.com/en/latest/_images/pick-sequence-5-point.png

movej(AbovePickArea)

movel(BinEntry)

movel(PrePick)

movel(PickitPick)

gripper_grasp() # For a suction-like gripper, do this one line above.
movel(PostPick)

movel(BinEXxit)

movel(AbovePickArea)

return gripper_pick_success()

movej(p) and movel(p) represent a robot motion to reach waypoint p following
a path interpolated linearly in joint or Cartesian space, respectively. Motions
between points of the pick sequence should be linear ( movel(p) ) to guarantee a
predictable path. Joint motions ( movej(p) ) are discouraged during the pick

sequence, as the robot may take an unexpected path that causes a collision with the
bin (if present) or neighboring parts. They are however recommended for motions
In open, unconstrained space, such as in the goto detection and place sequences.

The pick sequence performs the actual picking motion, which consists of a linear
approach to the pick point, a grasping action, and a linear retreat away from it.

e The sequence starts and ends at AbovePickArea, a waypoint known to
be reachable without collision both from the pick area and from the
other _

e The place where gripper_grasp() is called depends on the type of
gripper. Fingered grippers perform the grasp action at the pick point, but
for suction-like grippers this typically takes place before heading to the
pick point.

e The pick point, PickitPick, is computed by Pickit.

e Points PrePick and PostPick (plus optionally BinEntry and BinExit)

are computed in :
e The pick() function returns a boolean indicating whether the pick was

successful or not.


https://docs.pickit3d.com/en/latest/robot-integrations/robot-independent/pick-and-place-simple.html#robot-independent-pick-and-place-inputs
https://docs.pickit3d.com/en/latest/robot-integrations/robot-independent/pick-and-place.html#robot-independent-pre-post-pick

The check represented by gripper pick success() assumes that the gripper has
the means to check pick success from sensor input (like vacuum or force). If
this is not the case for your gripper, the pick() function can

simply return True always, and the pick failure logic will never be triggered.

on_pick_failure

# Action taken when picking an object failed.
def on_pick_failure():
gripper_release()

This hook is executed whenever the pick success check fails,
(see gripper check success() in the ). The default implementation opens

the gripper to prepare it for picking the next object.

place

# Sequence for placing the object at the specified dropof location.
def place():

movej(Dropoff)

gripper_release()

This sequence places the object at the specified dropoff location. For simple
applications the implementation is trivial, as shown above. However, some
applications require more advanced place motions.

The robot sometimes needs to know about the way the object was picked, in order
to place it appropriately. Refer to the examples to learn how to do
this with minimal programming effort.


https://docs.pickit3d.com/en/latest/robot-integrations/robot-independent/pick-and-place.html#robot-independent-hooks-pick
https://docs.pickit3d.com/en/latest/documentation/picking/smart-place-examples.html#smart-place-examples

It can also be the case that the drop-off point is not constant, as when parts need to
be stacked or palletized. Many robot programming languages provide helpers and
templates for stacking and palletizing, which can replace the fixed Dropoff point.

after_end

# Action performed once after pick and place has finished.
def after_end():
If not pickit_object_found():
If pickit_empty_roi():
print("The ROI is empty.")
elif pickit_no_image_captured():
print("Failed to capture a camera image.")
else:
print("The ROI is not empty, but the requested object was not found or is
unreachable.")

This hook is executed once after pick and place has finished. The proposed
implementation identifies the termination reason and prints an informative
statement if there are no more pickable objects. This is very useful to debug your
application while you’re setting it up.

When getting your application ready for production, you should handle the cases

that make sense to you with appropriate logic. For instance, a continuous-running
application might want to request more parts once all pickable objects have been

processed.

def after_end():
# Unrecoverable error. Raise alarm and stop program.
iIf pickit_no_image_captured():
alarm("Failed to capture a camera image.")
halt()

If not pickit_empty_roi():
# Save a snapshot to learn why no objects were detected in a non-empty ROL.
pickit_save_snapshot()

# Request more parts to start picking all over again.



feed_more_parts()

Notice how the application only stops on non-recoverable errors, and
triggers whenever it fails to empty the . Inspecting these
snapshots allow to improve the application by answering questions like:

« Are there actually unpicked objects in the ROI, or are there unexpected contents
in it?

« If there are objects, are they detected but unpickable by the robot (because they
are unreachable or the picking action failed)?

« If there are objects, but they are not detected, can we optimize the detection
parameters or to make them detectable?

FOR USAGE

# Application inputs (needs replacing with actual values).
Detect = [X,y,z,rx,ry,rz]

AbovePickArea = [x,y,z,rx,ry,rz]

Dropoff = [X,y,z,rx,ry,rz]

setup =1
product =1

def gripper_release():
# Add custom gripper release logic.

def gripper_grasp():
# Add custom gripper grasp logic.

def gripper_pick_success():
# Add custom gripper pick success check. Returns a boolean.
# 1f you don't have the means to measure pick success, return always True.

# Pick all objects and write number of successful picks to 'picks'.
picks = pick_and_place(setup, product)


https://docs.pickit3d.com/en/latest/support/saving-a-snapshot-in-pickit.html#saving-a-snapshot
https://docs.pickit3d.com/en/latest/documentation/setup/index.html#region-of-interest
https://docs.pickit3d.com/en/latest/optimize-your-application/hardware/faq-camera-mount-and-location.html#faq-camera-mount-and-location

Robot-mounted camera

If a robot-mounted camera is used, it’s not possible to perform multiple detection
retries (including camera captures) in parallel to the place motion sequence, as
camera capture can only take place from the Detect point. To correctly handle the

robot-mounted camera scenario, replace lines 31-34 with the following:

# Try first a single detection in parallel to place...
goto_detection()
capture_ok = pickit_capture_image()
if capture_ok:
pickit_process_image()
place()
pickit_get_result()
# If not successful, detect with retries. No longer in parallel with motions.
If not capture_ok or not pickit_object_found():
goto_detection()
pickit_find_objects_with_retries(retries)
pickit_get result()

Notice the use of the functions pickit_capture_image() and pickit_process_image().

Collision recovery

During the pick sequence, unexpected collisions may occasionally happen, which,
if unhandled, can trigger a protective stop.

To prevent robot downtime and the human intervention required to recover from a
protective stop, it is recommended to add a collision recovery routine to the robot
program, if supported by the robot programming language. An example recovery
strategy would be to release the gripper (and picked part, if any), move safely to
the Detect point to trigger a new detection, and pick a new part, as shown below:


https://docs.pickit3d.com/en/latest/robot-integrations/robot-independent/pick-and-place.html#pick-and-place-logic
https://docs.pickit3d.com/en/latest/robot-integrations/robot-independent/interface.html#robot-independent-capture-image
https://docs.pickit3d.com/en/latest/robot-integrations/robot-independent/interface.html#robot-independent-process-image

# Sequence for performing the picking motion
def pick():
movej(AbovePickArea)
movel(BinEntry)
movel(PrePick)
movel(PickitPick)
gripper_grasp() # For a suction-like gripper, do this one line above.
movel(PostPick)
movel(BinEXxit)
movel(AbovePickArea)

Error # Catch error in this loop.
if collision: # Collision detected by robot, trying to recover.
# Stop motion and clear path, if needed by the programming language.
stop_motion()
# Raise the gripper.
movel(BinEXxit)
return false;

return gripper_pick_success()

If another collision is detected while executing the collision recovery sequence, it
will not be handled and a protective stop will be raised.

The above sequence does not detect collisions outside the bin. If desired, other
collision recovery routines can be added to handle such cases.



Multi-pose calibration

Fully automated

1if not pickit_is_running():

2 print("Pickit is not in robot mode. Please enable it in the web interface.")
3 halt()

4

5# Calibration poses (needs replacing with actual values).
6calib_pose_1 = [x,y,z,rx,ry,rz]

7calib_pose_2 = [x,y,z,rx,ry,rz]

8calib_pose_3 = [x,y,z,rx,ry,rz]

9calib_pose_4 = [x,y,z,rx,ry,rz]

10calib_pose 5 = [X,y,z,rx,ry,rz]

11calib_pose 6 = [X,y,z,rx,ry,rz]

12calib_pose 7 = [X,y,z,rx,ry,rz]

13calib_pose 8 = [X,y,z,rx,ry,rz]

14calib_pose 9 = [X,y,z,rx,ry,rz]

15calib_pose 10 = [X,y,Z,rx,ry,rz]

16

17# Configure calibration using current calibration settings in the UI.
18# You can alternatively be explicit and force the configuration settings like so:
19#

20# config_ok = pickit_configure_calibration(METHOD_MULTI_POSE,
CAMERA_MOUNT_ON_ROBOT)

21

22config_ok = pickit_configure_calibration()

23

24if not config_ok:

25 # Add actions to perform on failed configuration.

26 exit() # Do not continue program execution.

27

28# Move to each calibration pose and trigger a calibration plate detection.
29movej(calib_pose_1)

30pickit_find_calibration_plate()

31

32movej(calib_pose_2)

33pickit_find_calibration_plate()



34

35movej(calib_pose_3)
36pickit_find_calibration_plate()

37

38movej(calib_pose 4)
39pickit_find_calibration_plate()

40

41movej(calib_pose 5)
42pickit_find_calibration_plate()

43

44movej(calib_pose_6)
45pickit_find_calibration_plate()

46

47movej(calib_pose 7)
48pickit_find_calibration_plate()

49

50movej(calib_pose_8)
51pickit_find_calibration_plate()

52

53movej(calib_pose 9)
54pickit_find_calibration_plate()

55

56movej(calib_pose 10)
57pickit_find_calibration_plate()

58

59# Compute the robot-camera calibration.
60calibration_ok = pickit_compute_calibration()
61

62if not calibration_ok:

63 # Add actions to perform on failed calibration.

Camera-Robot Calibration

File Structure

Jdataset
+-- dataset1
| +-- out.json



The calibration script scans the sub-directories in a given dataset, each sub-
directory contains the sample associated with one camera, including a images and
a meta folder. The *.json file for each sample has the joint angle of the manipulator
and corresponding image name. The table folder is optional, it uses the calibration
parameter associated with the directory it is in to estimate the table surface height

w.r.t the manipulator's base frame.

IR Obstacle Avoidance Sensor

Obstacle LED

Ré6(Frequency Adjust)
NE555

Power LED

IR Receiver

IR LED



CONNECTION

Make sure the Enable Jumper is placed on the Infrared Obstacle
Avoidance sensor, Build the circuit as below digram:

CODE PROGRAM

After above operations are completed, connect the board to your computer
using the USB cable. The green power LED (labelled PWR) should go
on.Open the Arduino IDE and choose corresponding board type and port type
for you project. Then load up the following sketch onto your board.

int LED = 13; // Use the onboard Uno LED
int isObstaclePin = 2; // This is our input pin
int isObstacle = HIGH; // HIGH MEANS NO OBSTACLE

void setup() {
pinMode(LED, OUTPUT);
pinMode(isObstaclePin, INPUT);
Serial.begin(9600);


https://github.com/osoyoo/Osoyoo-development-kits/tree/master/Osoyoo%20lessons%20for%20Arduino/Obstacle_Avoidance_Sensor.zip

}

void loop() {
iIsObstacle = digitalRead(isObstaclePin);
if (isObstacle == LOW)
{
Serial.printin("OBSTACLE!!, OBSTACLE!!);
digitalWrite(LED, HIGH);
¥

else

{

Serial.printin("clear™);
digitalWrite(LED, LOW);

}
delay(200);

}

LPG SENSOR

/Il code for with led only

int LED =12;

int LPG_sensor = 3;// MQ-6 SENSOR
int LPG_detected;

void setup()

{

Serial.begin(9600);

pinMode(LED, OUTPUT);
pinMode(LPG_sensor, INPUT);



}
void loop()

{

LPG_detected = digitalRead(ALCOHOL _sensor);
Serial.printin(LPG_detected);

If (ALCOHOL _detected ==1)

{

Serial.printin("LPG detected...");
digitalWrite(LED, HIGH);

¥

else

{

Serial.printin("No LPG detected ");
digitalWrite(LED, LOW);

by

¥



DUST SENSOR

int dustPin = 0; // dust sensor - Arduino AO pin

int ledPin = 2;

float voltsMeasured = O;
float calcVoltage = 0;

float dustDensity = 0;

void setup()

{
Serial.begin(57600);

pinMode(ledPin,OUTPUT);

}

void loop()

{
digitalWrite(ledPin,LOW); // power on the LED

delayMicroseconds(280);

voltsMeasured = analogRead(dustPin); // read the dust value



delayMicroseconds(40);
digitalWrite(ledPin,HIGH); // turn the LED off

delayMicroseconds(9680);

//measure your 5v and change below
calcVoltage = voltsMeasured * (5.0 / 1024.0);
dustDensity = 0.17 * calcVoltage - 0.1;
Serial.printin("GP2Y1010AUOF readings");
Serial.print("Raw Signal Value =");
Serial.printin(voltsMeasured);
Serial.print("Voltage = ");
Serial.printin(calcVoltage);
Serial.print("Dust Density = ");
Serial.printin(dustDensity); // mg/m3
Serial.printin(");

delay(1000);



