In Ruby, all classes are derived Irom class Object. dSince methods can be aaded
to classes at any time, it is possible to re-open object and add methods, which
then belong to every object.

This project involves adding a method reach to all objects. The reach method
is like the standard each method, except that it applies to the leaves of container
objects. The each method operates on each member of the container, but reach
operates recursively, entering members which are also containers and iterating
through their contents. For our purposes, an object is just a container if it has an
each method. For instance,

irb(main):001:0> load("reach2.rb")

=> true

irb(main):002:0> [4, 9, "fred", 1l].each { |x| print x, "\n"
4

)

fred

ikl

=> [4, 9, "fred", 11]

irb(main):003:0> [4, 9, "fred", 1ll].reach { |x| print x, "\n"
4

9

fred

il

=> [4, 9, "fred", 11]

irb(main):004:0> [4, ["ding", "bat"] , "fred", [1, 2, 3]].ea
4

["ding", "bat"]

fred

(1, 2, 3]

=> [4, ["ding", "bat"], "fred", [1, 2, 3]]

irb(main):005:0> [4, ["ding", "bat"] , "fred", [1, 2, 3]].re
4

ding
bat
fred
il
2
3
=> [4, ["ding", "bat"], "fred", [1, 2, 3]]
irb(main):006:0> 17.each { |x| print x, "\n"
NoMethodError: undefined method “each' for 17:Fixnum
from (irb):6
from /usr/bin/irb:11:in ~<main>'
irb(main):007:0> 17.reach { |x| print x, "\n" }
17
=> 17
irb(main):008:0> { "mike" => 17, "bill" => 3, "sally" => 25,
["mike", 17]
["bill", 3]
["sally", 25]
["alex", 9]
=> {"mike"=>17, "bill"=>3, "sally"=>25, "alex"=>9}
irb(main):009:0> { "mike" => 17, "bill" => 3, "sally" => 25,
mike
17/
bill
3
sally
25
alex
9
=> {"mike"=>17. "bill"=>3, "sallv"=>25. "alex"=>9}

["mike", 17]

["bill", 3]

Yealily”, 23]

["alex", 9]

=> {"mike"=>17, "bill"=>3, "sally"=>25, "alex"=>9}
irb(main):009:0> { "mike" => 17, "bill" => 3, "sally" => 25,
mike

17/

bill

B

sally

25

alex

9

=> {"mike"=>17, "bill"=>3, "sally"=>25, "alex"=>9}
irb(main):010:0> { "mike" => [3, 9, 8, 7], "bill" => 3, "sa
['mike", [3, 9, 8, 7]]

(1L - S

["sally", [4, 7, 1]]

["alex", []]

=> {"mike"=>[3, 9, 8, 7], "bill"=>3, "sally"=>[4, 7, 1], "ale
irb(main):011:0> { "mike" => [3, 9, 8, 7], "bill" => 3, "sa
mike
3

©

8

7
bill
3
sally
4

7

il

alex
=> {"mike"=>[3, 9, 8, 7], "bill"=>3, "sally"=>[4, 7, 1], "ale
irb(main):012:0>[[1,4,5,[3,[1,4,["hi","there"]]].each { |x| p
[1
4

5

(S, [y & [Pme?,; "))

=> [[1, 4, 5, [3, []1, 4, ["hi", "there"]]]

irb(main):013:0> [[],4,5,[3,[],4,["hi","there"]]].reach { |x]|
4

5]
3
4

hi

there
=> [[1, 4, 5, [3, [1, 4, ["hi", "there"]]]

Place your code in a file that can be 1oaded as shown above. It should re-open
class object and define the reach method. A method added to object is
inherited by every class, and so becomes part of every object in the Ruby
system, including ones already created.

This assignent is a Jedi mind trick. My reach method is eight lines (excluding
comments), and contains one if and no loops. And here's how you do it. Begin
with this not-too-fancy partial solution:
class Object
def reach
yield(self)
return self
end
end

SO
irb(main):001:0> load("foo.rb")
=> true
irb(main):002:0> 17.reach { |x| print x, "\n" }
7

o Pt RS e 8 M e U S LT e sen et S LR e e L] S I e e b e St wf P e
mike

3

9

8

7
bill
g
sally
4

7

1l

alex

=> {"mike"=>[3, 9, 8, 7], "bill"=>3, "sally"=>[4, 7, 1], "ale
irb(main):012:0>[[1,4,5,[3,[]1,4,["hi","there"]]].each { |x| p
[1
4

5

3, [1, 4, ["hi", "there"]]

=> [[1, 4, 5, [3, []1, 4, ["hi", "there"]]]

irb(main):013:0> [[],4,5,[3,[1,4,["hi","there"]]].reach { |x|
4

5
3]
4

hi

there
=> [[1, 4, 5, [3, [1, 4, ["hi", "there"]]]

Place your code in a file that can be 1oaded as shown above. It should re-open
class object and define the reach method. A method added to object is
inherited by every class, and so becomes part of every object in the Ruby
system, including ones already created.

This assignent is a Jedi mind trick. My reach method is eight lines (excluding
comments), and contains one if and no loops. And here's how you do it. Begin
with this not-too-fancy partial solution:

class Object
def reach
yield(self)
return self
end
end

Ny
irb(main):001:0> load("foo.rb")

=> true

irb(main):002:0> 17.reach { |x| print x, "\n" }

iy

=> 17

irb(main):003:0> [[],4,5,[3,[1,4,["hi","there"]]].reach { |x|
[rl, 4, 5, [3, [1, 4, ["hi", "there"]]]

=> [[1, 4, 5, [3, [1, 4, ["hi", "there"]]]

This is a partial solution, since it works correctly for classes which are not
collections. For classes that are, use their each method, and run reach on each
member. How do you know if the current class is a collection? By defintion, a
collection is any object which has an each method. To find out, ask yourself.
The code is:

|if self.respond_to?(:each)
So, the complete body of reach should find out if its object has an each
method. If so, use it to run reach on each member, otherwise just yield yourself]
That's all it takes, young Padawan.
Submission
When your function works, is nicely formatted and documented, submit it usingl
this form.

