6. Recall the worst-case time calculations for SelectionSort and InsertionSort:

[10 pts]

n—-2 n—1
SelectSort: Ts(n) = Z [c; + [Z 62] 3 63]

i=0 F=i+1

n—1

InsertSort: Tr(n) = Z [e1 +i(ca + e3) + 2 + ¢4]

=0

Suppose that:

e For a particular implementation of SelectionSort we have ¢; = 0.6, c2 = 0.6, and ¢3 = 0.11.
e For a particular implementation of InsertionSort we have ¢; = 0.1, c; = 0.2, and ¢3 =

cq = 0.4.

Even though both are ©(n?) it’s possible for one to be faster for certain n. For which positive
integer values of n will each method be faster and for any n might they take the same amount

of time?
7. Consider the following algorithm:

\\ PRE: A is a global infinitely long strictly increasing list.
\\ PRE: TARGET is a target element which definitely exists in the list

\\ PRE: n is a positive integer.
function binarysearch (A, TARGET ,n)

L =20

R =n

while TARGET > A[R]
R =2 %R

end

while L <= R
C = floor ((L+R)/2)
if A[C] == TARGET
return C
elif TARGET < A[C]
R = C-1
elif TARGET > A[C]
L = C+1
end
end
return FAIL
end
\\ POST:

(a) Explain in your own words what this algorithm does and how it works.

(b) Explain why the code will definitely achieve its goal.

[10 pts]
(5 pts)

(c) If each assignment takes constant time ¢, explain why there is no upper limit to the [5 pts]

amount of time this algorithm can take.

Scanned with CamScanner

