— RISC-V Simulator

Abstract

In this assignment, you will extend the functionality of your RISC-V disassembler to also simulate the
execution of a binary file.

This is the third of a multi-part assignment creating computing machine capable of executing real
programs compiled with gcc. The purpose is to gain an understanding of a machine and its instruction
set.

1 Problem Description

Execute a binary file by loading it into a simulated memory of sufficient size and then decode and execute each
32-bit instruction one-at-a-time starting from address zero and continuing until an an ebreak instruction is
encountered, an instruction-count limit is reached, or an illegal instruction has been encountered.

2 Files You Must Write

You will write a C4++ program suitable for execution on hopper.cs.niu.edu (or turing.cs.niu.edu.)

Your source files MUST be named exactly as shown below or they will fail to compile and you will receive
zero points for this assignment.

Create a directory named a5 and place within it a copy of all the the source files from assignment 4 and add
the additional files discussed below.

e hex.h (see assignment 4.)

e hex.cpp (see assignment 4.)

e memory.h (see assignment 4.)

e memory.cpp (see assignment 4.)

e rv32i_decode.h (see assignment 4.)

e rv32i_decode.cpp (see assignment 4.)

e rv32i_hart.cpp The definition of the class rv32i_hart.

e rv32i_hart.h The definitions of member functions of class rv32i_hart.
o registerfile.h The definition of the registerfile class will go here.

e registerfile.cpp The registerfile class member function definitions.
e cpu_single_hart.h The definition of the class cpu_single_hart.

e cpu_single_hart.cpp The cpu_single_hart class member function definitions.
e main.cpp Your main() and usage() function definitions.

Provided that no mistakes are present in the files for Assignment 4 then no changes to those files are neces-
sary.

Page 1 of 13

Hardik Patel

Hardik Patel

Hardik Patel

— RISC-V Simulator

2.1 registerfile.h and registerfile.cpp

The purpose of this class is to store the state of the general-purpose registers of one RISC-V hart.!
Recall that a RISC-V hart has 32 registers and that every one is identical except for register x0.

Register x0 will always contain the value zero when ever it is read and it will never store anything that is
written into it (such data is simply ignored/discarded.)

Implement registerfile with a private vector of int32_t elements (one for each register) and a constructor
that uses the reset () method to initialize register x0 to zero, and all other registers to 0xf0f0f0£0.

It must provide the following member functions:

e void reset();

Initialize register x0 to zero, and all other registers to 0xf0f0£0£0.

e void set(uint32_t r, int32_t val);

Assign register r the given val. If r is zero then do nothing.

e int32_t get(uint32_t r) const;

Return the value of register r. If r is zero then return zero.

e void dump(const std::string &hdr) const;

Implement a dump of the registers. The hdr parameter is a string that must be printed at the begining
of the output lines. For example, if called as dump("") then the output must be formatted precisely
as:

x0 00000000 f0f0f0f0 fOf0f0f0 fO0f0f0f0 f£fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0£f0
x8 f0£f0£f0f0 fO0f0f0f0 fO0f0f0f0 fOf0f0f0 £fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0£f0
x16 f0£f0f0f0 fO0f0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0 f£Of0f0£f0
x24 f0f0f0f0 f0f0f0f0 fOf0f0f0 fOf0f0f0 £fO0f0f0f0 fOf0f0f0 fOf0f0f0 f0f0f0£f0

if called as dump ("HEADER-") then the output must be formatted precisely as:

HEADER- x0O 00000000 f0f0f0f0 f0f0f0f0 f0f0f0f0 £f0f0f0f0 f0f0f0f0 fO0f0f0f0 fO0f0£f0f0
HEADER- x8 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 £fO0f0f0f0 fO0f0f0f0 fO0f0f0f0 fOf0f0f0
HEADER-x16 f0f0f0f0 fOf0f0f0 fOf0f0f0 f0f0f0f0 £fO0f0f0f0 fOf0f0f0 f0f0f0f0 f0f0f0f0
HEADER-x24 f0f0f0f0 f0f0f0f0 f0f0f0f0 f0f0f0f0 £f0f0f0f0 fO0f0f0f0 fO0f0f0f0 fO0f0£f0f0

Note the space-gap on the first two lines.

Inherit the hex class and use its hex32 () utility function to simplify printing the register values!

2.2 rv32i hart.h and rv32i hart.cpp

Define rv32i_hart as a subclass of rv32i_decode to represent the execution unit of a RV32I hart as seen
in Figure 1

Implement a member function named exec (using a similar design as that used in rv32i_decode: :decode)
to simulate the execution of RV32I instructions and helper methods for each instruction with names like
exec_lui and exec_jalr to perform the simulated execution.

IThe term hart means “hardware thread.” As part of the simple CPU you are creating for this assignment, this term is the
same as what is often referred to as a core.

Page 2 of 13

Hardik Patel

Hardik Patel

© 0 N o O A W N R

e e
[O)

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

" — RISC-V Simulator

class rv32i_hart : public rv32i_decode

{

public:
rv32i_hart (memory &m) : mem(m) { }
void set_show_instructions(bool b) { show_instructions = b; }
void set_show_registers(bool b) { show_registers = b; }

bool is_halted() const { return halt; }

const std::string &get_halt_reason() const { return halt_reason; 1}
uint64_t get_insn_counter () const { return insn_counter; }

void set_mhartid(int i) { mhartid = i; }

void tick(const std::string &hdr="");
void dump(const std::string &hdr="") const;
void reset();

private:
static constexpr int instruction_width = 35;
void exec(uint32_t insn, std::ostreamx*);
void exec_illegal_insn(uint32_t insn, std::ostreamx);

bool halt = { false 1};
std::string halt_reason = { "none" };

uint64_t insn_counter = { 0 };
uint32_t pc = { 0 };
uint32_t mhartid = { 0 };

protected:
registerfile regs;
memory &mem;

};

Figure 1: rv32i_ hart()

2.2.1 rv32i_hart Public Member Functions

e rv32i_hart (memory &m);

The constructor must initialize mem as shown in Figure 1 because mem is a reference.

e void set_show_instructions(bool b);
Mutator for show_instructions. When true, show each instruction that is executed with a comment
displaying the register values used.

e void set_show_registers(bool b);

Mutator for show_registers. When true, dump the registers before instruction is executed.

e bool is_halted() const;

Accessor for halt. Return true if the hart has been halted for any reason.

e const std::string &get_halt_reason() const;

Return a string indicating the reason the hart has been halted. Values returned are one of the following:

— "none"

— "EBREAK instruction"

— "ECALL instruction"

— "Illegal CSR in CRRSS instruction"

— "Illegal instruction"

Page 3 of 13

Hardik Patel

Hardik Patel

RISC-V Simulator

— "PC alignment error"

e void reset();
Reset the rv32i object and the registerfile.

To reset a hart:

Set the pc register to zero.

— Call regs.reset () to reset the register values.

Set the insn_counter to zero.
Set the the halt flag to false.

— Set the the halt_reason to "none".

e void dump(const std::string &hdr="") const;

Dump the entire state of the hart. Prefix each line printed by the given hdr string (the default being
to not print any prefix.) It will dump the GP-regs (making use of the regs member variable by calling
regs.dump(hdr)) and then add a dump of the PC register in the following format:

x0 00000000 £0f0f0f0 00001000 fO0f0f0f0 £f0f0f0f0 f0f0f0f0 f0f0f0f0 fOf0f0f0
x8 f0f0f0f0 f0f0f0f0 fO0f0f0f0 fO0f0f0f0 f£O0f0f0f0 fOf0f0f0 fOf0f0f0 fO0f0f0£f0
x16 f0£f0£f0f0 f0f0f0f0 fOf0f0f0 fOf0f0f0 £Of0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0£f0
x24 f0f0f0f0 f0f0f0f0 fOfOf0f0 fOf0f0f0 £f0f0f0f0 f0f0f0f0 fOf0f0f0 f0f0f0£f0
pc 00000000

If the hdr string is set to " [XYZ] " then the output would look like:

[XYZ] x0 00000000 fOf0f0f0 00001000 fOf0f0f0 fOf0fOf0 fOfOfOf0 fOfOfOf0 fOfOfOf0
[XYZ] x8 fOfOf0f0 fOfOf0f0 fOfOf0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0
[XYZ] x16 fOfOf0f0 fOfOf0f0 fOfOf0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0
[XYZ] x24 fOfOf0f0 fOfOf0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0 fOf0f0f0
[XYZ] pc 00000000

e uint64_t get_insn_counter() const;
Accessor for insn_counter. Return the number of instructions that have been executed by the simu-
lator since the last reset ().

e void set_mhartid(int 1i);
Mutator for mhartid. This is used to set the ID value to be returned by the csrrs instruction for CSR
register number 0xf14. (This will always be zero on processors that only have a single-hart.)

e void tick(const std::string &hdr="");

The tick () method function is how to tell the simulator to execute and instruction. The hdr parameter
is required to be printed on the left of any and all output that is displayed as a result of calling this
method.

If the hart is halted then return immediately without doing anything. Otherwise, simulate the execution
of one single instruction:

If show_registers is true then dump the state of the hart.

If the pc register is mot a multiple of 4 then set the halt flag to true, the halt_reason to
"PC alignment error", and return without further processing.

Increment the insn_counter variable (not the pc register.)

— Fetch an instruction from the memory at the address in the pc register.

- Page 4 of 13

Hardik Patel

Hardik Patel

AW e

© 0w N o o

11
12
13

[

0w N o«

RISC-V Simulator

— If show_instructions is true then

* Print the hdr, the pc register (in hex), and the fetched instruction (in hex).

* Call exec(insn, &std::cout) to execute the instruction and render the instruction and
simulation details.

— else
x Call exec(insn, nullptr) to execute the instruction without rendering anything.
Note that the reset() and tick() methods are the only way to change the state of the simulated
hart hardware. (Which is similar to but not to be confused with changing the state of the C++

rv32i_hart object! For example, the notion of calling set_show_instructions() can change the
state of the rv32i_hart object. But it does not change the state of the simulated hart hardware.)

2.2.2 1rv32i_hart Private Member Functions

e void exec(uint32_t insn, std::ostreamx);

This function will execute the given RV32I instruction by making use of the get_xxx() methods to
extract the needed instruction fields to decode the instruction and invoke the associated exec_xxx ()
helper function by using the same sort of switch-logic from assignment 4. See Figure 2.

This function must be capable of handling any 32-bit value. If an illegal instruction is encountered
then call an exec_illegal_insn() method to take care of the situation.

void rv32i_hart::exec(uint32_t insn, std::ostream* pos)

{

switch(opcode)

{

default: exec_illegal_insn(insn, pos); return;
case opcode_lui: exec_lui(insn, pos); return;

case opcode_auipc: exec_auipc (insn, pos); return;

}

Figure 2: Implementing exec ()

e void exec_illegal_insn(uint32_t insn, std::ostream* pos);

Set the halt flag and, if the ostream* parameter is not nullptr then use render_illegal_insn() to
render the proper error message by writing it to the pos output stream. See Figure 3.

void rv32i_hart::exec_illegal_insn(uint32_t insn, std::ostream* pos)

{

(void)insn;
if (pos)
*pos << render_illegal_insn(insn);
halt = true;
halt_reason = "Illegal instruction";

Figure 3: exec_illegal_insn()

Page 5 of 13

Hardik Patel

Hardik Patel

© 0 N O oA W N R

e e e
W N = O

14
15
16
17

RISC-V Simulator

e void exec_xxx(uint32_t insn, std::ostreamx);

Your exec_xxx() helper functions perform a similar role as the render_xxx() helpers. However, the
exec helpers will simulate the execution of an instruction.

Each exec helper function must simulate the execution of an instruction and, optionally, render the
details of what it is simulating.

The rendering of the simulation details for each instruction can be seen in Figure 8.

Use the render_xxx() helpers from assignment 4 to render the decoded instructions when needed by
the exec_xxx () helpers.

To align the comment column when adding the simulation details to those instructions that have them,
consider using the std: :setw() I/O manipulator to add padding on the right as seen in Figure 4

Note that the simulation-description comments are modeled on the way that the operations are de-
scribed in the “Detailed Description” column of the reference card at the end of RVALP. Note that for
sake of space, the incrementing of the pc register is not shown by this simulator except in the branch
and jump instructions, where the updating of the pc register is a significant aspect of the instruction.

When rendering the exec operations comment, the data values displayed are those of the registers,
fields, or data involved in the instruction. When combined with the hart dumps before and after
each instruction execution, they provide everything necessary to verify that an instruction has been
implemented properly.

See Figure 8 for examples of the comment format of each type of instruction.

Your output must precisely match the reference output or it will be ungradable and you will receive a
zero for the output portion of your grade.

The correct value for the instruction_width constant is 35;

See Figure 4.

void rv32i_hart::exec_slt(uint32_t insn, std::ostream* pos)

{

uint32_t rd = get_rd(insn);
uint32_t rsi
uint32_t rs2

get_rs1(insn);
get_rs2(insn);

int32_t val = (regs.get(rsl) < regs.get(rs2)) 7 1 : 0;

if (pos)
{
std::string s = render_rtype(insn, "slt ")
*pos << std::setw(instruction_width) << std::setfill(’ ’) << std::left << s;
*pos << "// " << render_reg(rd) << " = (" << hex::to_hex0x32(regs.get(rsl)) << " < " << hex::
to_hex0x32(regs.get(rs2)) << ") 7 1 : 0 = " << hex::to_hex0x32(val);
}
regs.set(rd, val);
pc += 4;

Figure 4: exec_s1t()

2.2.3 rv32i_hart Protected Member Variables

e registerfile regs;

The GP-regs (general purpose registers) for your simulation.

Page 6 of 13

Hardik Patel

Hardik Patel

RISC-V Simulator

e memory &mem;

This will contain a reference to the memory object from assignment 3. It will be used by the disassembler
and execution logic to fetch the instructions and to read/write data in the load and store instructions.

2.2.4 rv32i_hart Private Member Variables

e bool halt;
A flag to stop the hart from executing instructions. Set it any time that the execution should halt and
use it in tick() to prevent further instructions from executing until/unless reset () is invoked.

e std::string halt_reason;
If halt is set to true, also set this to contain a string describing the reason for the halt. Initialize to
"none" if reset () is called.

e uint32_t mhartid;
This contains the CSR register value to return by a csrrs instruction that reads register Oxf14. Set
the default value for this to zero. (In this assignment, this default value will never change.)

e bool show_instructions;

A flag with a default value of false. When true, print each instruction when simulating its execution.

e bool show_registers;
A flag with a default value of false. When true, print a dump of the hart state (by calling dump())
before executing each instruction.

e uint64_t insn_counter;

This will count the number of instructions that have been executed. Initialize to zero and if/when
reset () is called.

Use this to count the number of instructions executed.

e uint32_t pc;

Use this to contain the address of the instruction being decoded/disassembled. When decoding in-
structions that refer to the pc register to calculate a target address (e.g. auipc, jal, and branch
instructions) use this value to determine the instruction’s memory address.

Initialize to zero and if/when reset () is called.

2.3 cpu.single hart.h and cpu_single_ hart.cpp

This is a subclass of rv32i_hart that is used to represent a CPU with a single hart.

2.3.1 cpu_single hart Public Member Functions

e cpu_single_hart(memory &mem) : rv32i_hart(mem) {}
Implement this constructor as shown above in order to pass the memory class instance to the constructor
in the base class.

e void run(uint64_t exec_limit);

Since code that executes on this simulator has no (practical) way to determine how much memory the
machine has, set register x2 to the memory size (get it with mem.get_size()) before executing any

Page 7 of 13

Hardik Patel

Hardik Patel

© W N ;o W N

e S R
N A =]

- RISC-V Simulator

instructions in your run() method. Note that the number of bytes in the memory is also the address
of the first byte past the end of the simulated memory.?

If the exec_limit parameter is zero, call tick() in a loop until the is_halted() returns true.

If the exec_limit parameter is not zero then enter a loop that will call tick() until is_halted()
returns true or exec_limit number of instructions have been executed.

If the hart becomes halted then print a message indicating why by using get_halt_reason() to get
the reason message.

Regardless of why the execution has terminated, print the number of instructions that have been
executed by using get_insn_counter().

For example running the simulator with an execution limit of 2, dumps enabled by the -ir command-
line options, and simulating the allinsns5.bin example program will result in the output shown in
Figure 5.

winans@x570:~$./rv32i -m100 -irl2 allinsns5.bin

x0 00000000 fOfO0f0fO 00000100 fOf0f0f0 fOf0f0f0 fOfO0f0f0 fOfO0f0fO fOfO0fOfO
x8 fOf0f0f0 fOf0f0f0 fOf0f0fO0 fOf0f0f0 fOfO0f0f0 fOfOf0Of0 fOfO0OfO0fO fOfOfOfO
x16 f0f0f0f0 fO0fO0f0f0 fOfO0f0f0 fOf0f0f0 fO0fO0f0f0 fOfOf0f0 fOfO0f0f0 fOfOf0fO
x24 f0f0f0ofo fOfO0f0f0 fOfO0f0f0 fOfO0f0f0 fOfO0f0f0 fOfO0f0f0 fOfO0f0f0 fOfO0fO0fO
pc 00000000
00000000: abcde237 lui x4 ,0xabcde // x4 = Oxabcde000

x0 00000000 fOf0f0fO 00000100 fOfO0f0fO0 abcde000 fOf0f0f0 fOfO0f0fO fOfOfOfO
x8 fO0f0f0f0 fOf0f0f0 fOfO0f0f0 fOfO0f0f0 fOfO0f0f0 fOfO0f0f0 fOf0f0f0 fOf0f0fO0
x16 f0f0f0f0 fOfO0f0f0 fOfO0f0f0 fOfO0f0f0 fOfO0f0f0 fOfOf0f0 fOfO0f0f0 fOfO0fO0fO
x24 f0f0f0f0 fOfO0f0f0 fOfOf0f0 fOfO0f0f0 fOfO0f0f0 fOfOf0f0 fOfOf0f0 fOfOfO0fO
pc 00000004

00000004: abcde217 auipc x4 ,0xabcde // x4 = 0x00000004 + Oxabcde000 = Oxabcde004

2 instructions executed

Figure 5: Example output from running: rv32i -m100 -irl2 allinsns5.bin

2.4 main.cpp

Provide a main() function so that it accepts the command-line parameters (and reflect them in a proper
Usage statement) as discussed below. See the example logic in the main() from the last assignment and the
on-line manual for getopt(3) for details on how to use it to parse the arguments.

The command line arguments you must provide are:

o [-d]

Show a disassembly of the entire memory before program simulation begins. By default, do not
disassemble the program memory.

o [-i]

Show instruction printing during execution. By default, do not print instructions during execution.

e [-1 execution-limit]

Specifies the maximum limit of instructions to execute. If set to zero then there is no limit (run
forever.) By default there is no limit.

2By convention, x2 is used as the program’s full-descending stack pointer. Setting it to the address of the first non-ezistent
memory address is suitable for allocating the top range of memory addresses to a call-stack used to hold the program’s activation
records.

Page 8 of 13

Hardik Patel

Hardik Patel

© W N ;o W N e

RISC-V Simulator

[-m hex-mem-size]
Specifies the size of the simulated memory. By default the size must be 0x100.
[-r]

Show a dump of the hart (GP-registers and pc) status before each instruction is simulated.

o [-z]

Show a dump of the hart status and memory after the simulation has halted.

e The last argument is the name of the binary file to load into the memory before the simulation begins.
Keep in mind that any of the command-line arguments may appear in any order and both on their own:
-d -i -r -z -1 1234 -m efcO
as well as in groups or stuck together:

-dirz -11234 -mefcO

The getopt(8) function can deal with these situations. Make sure that your solution does too.

If any command-line arguments are invalid then your usage () function must print an appropriate error and
Usage messages and terminate the program in the traditional manner. (See https://en.wikipedia.org/
wiki/Usage_message and Figure 6.)

winans@x570:~$./rv32i -X allinsnsb5.bin
./rv32i: invalid option -- ’X?
Usage: rv32i [-d] [-i] [-r] [-z] [-1 exec-1limit] [-m hex-mem-size] infile
-d show disassembly before program execution
-i show instruction printing during execution
-1 maximum number of instructions to exec
-m specify memory size (default = 0x100)
-r show register printing during execution
-z show a dump of the regs & memory after simulation

Figure 6: Example output from running: rv32i -X allinsns5.bin

3 Input

You will be provided with multiple executable test programs and the command-line arguments used to run
them on the course web site.

4 QOutput

Your program will be tested with a combination of the command-line arguments and runs with dumps and
traces of instructions executed will be diff’d against the output from a reference implementation.

Your program must precisely match the reference output to be considered perfect.

Page 9 of 13

https://en.wikipedia.org/wiki/Usage_message
https://en.wikipedia.org/wiki/Usage_message
Hardik Patel

Hardik Patel

- RISC-V Simulator

5 How To Hand In Your Program

When you are ready to turn in your assignment, make sure that the only files in your a5 directory is/are
the source files defined and discussed above. Then, in the parent of your a5 directory, use the mailprog.463
command to send the contents of the files in your a5 project directory in the same manner as we have used
in the past.

6 Grading

The grade you receive on this programming assignment will be scored according to the syllabus and its
ability to compile and execute on the Computer Science Department’s computer.

It is your responsibility to test your program thoroughly.

When we grade your assignment, we will compile it on hopper.cs.niu.edu using these exact commands:

g++ -g -ansi -pedantic -Wall -Werror -std=c++14 -c -o main.o main.cpp

g++ -g -ansi -pedantic -Wall -Werror -std=c++14 -c -o rv32i_decode.o rv32i_decode.cpp

g++ -g -ansi -pedantic -Wall -Werror -std=c++14 -c -o memory.o memory.cpp

g++ -g -ansi -pedantic -Wall -Werror -std=c++14 -c -o hex.o hex.cpp

g++ -g —ansi -pedantic -Wall -Werror -std=c++14 -c -o registerfile.o registerfile.cpp

g++ -g -ansi -pedantic -Wall -Werror -std=c++14 -c -o rv32i_hart.o rv32i_hart.cpp

g++ -g -ansi -pedantic -Wall -Werror -std=c++14 -c -o cpu_single_hart.o cpu_single_hart.cpp

g++ -g -ansi -pedantic -Wall -Werror -std=c++14 -o rv32i main.o rv32i_decode.o memory.o hex.o \
registerfile.o rv32i_hart.o cpu_single_hart.o

Your program will then be run multiple times using different memory sizes, test data files, and command
line options.

7 Hints

As always, build up a solution one step at a time. Some times you can start with what you already have
and build upon it. Other times you must create something new and (should) unit test it before trying to
integrate it with the rest of your code.

e Start by updating main.cpp to accept the new command line options and test it by printing out their
values. Then add the conditional call to disassemble (mem) and test that your new -d command line
option works.

e After the disassembly, construct and reset() your CPU like this:

cpu_single_hart cpu(memn);
cpu.reset();

e Stub in void dump(const std::string &hdr="") const; that prints only a message to let you know
it has been called. Then add conditional logic to call it and mem.dump() based on the -z command
line argument and test it.

e Add the flags to the rv32i_hart class and set them based on the associated -i and -r command line
options.

e Stub in the rv32i_hart::exec() method that treats every instruction as illegal and use it to develop
and debug your rv32i_hart::tick() and cpu_single_hart::run() methods. (If you can not execute
one illegal instruction and halt the simulation then you can’t possibly expect anything else to work.)

Page 10 of 13

Hardik Patel

Hardik Patel

[S N

© w N o

11

- RISC-V Simulator

If your simulation ends with an ebreak instruction, then the application program your simulator is
running will have terminated gracefully. If so then your cpu_single_hart: :run() method loop should
end and print the message:

Execution terminated. Reason: EBREAK instruction

The other reasons for halting the simulation should print similar messages.

Regardless of why the simulated application has ended, print out the instruction counter as seen at
the end of Figure 8.

Note that it should be trivial to create a file for testing your logic for handing illegal instructions. .. just
leave one of the actual instructions unimplemented in rv32i_hart::exec() and see that it is treated
accordingly. Alternately, you can also run the simulator on just about any random (preferably small or
even empty) file and odds are that it will include illegal instruction values. (No, you will not be given
a test file with illegal instructions for testing this specific feature. It is your job to think creatively to
solve this sort of problem.)

e Write the registerfile class add add it as a member to the rv32i_hart class. You should then be

able to finish your rv32i_hart: :dump() method so that it prints out the GP-regs and the pc register
as seen in Figure 5.

e Finish any remaining work left undone in your in your rv32i_hart: :tick () method so that it properly

calls rv32i_hart: :exec() as discussed in section 2.2.1.

e Use the big switch statement from the rv32i_decode::decode() as a template structure for your

rv32i_hart::exec() method. The first instruction you should implement should be ebreak (so the
test programs can stop your simulator) as seen in Figure 7.

void rv32i_hart::exec_ebreak(uint32_t insn, std::ostream* pos)

{

if (pos)

{
std::string s = render_ebreak (insn) ;
*pos << std::setw(instruction_width) << std::setfill(’ ’) << std::left << s;
*pos << "// HALT";

}
halt = true;
halt_reason = "EBREAK instruction";

Figure 7: Executing the ebreak instruction.

Note that rv32i_hart: :exec() is called differently than rv32i_decode: :decode() in that it is void
and takes different arguments. Re-using the already-debugged switch structure from assignment 4
should work well, but keep in mind that the cases may have to return differently as seen in Figure 2.

e At this point, add one instruction at-a-time comparing your output against the reference files.

Since ebreak is a bit simplistic (and a special case that is almost identical to the way you should
implement the illegal instruction method), a close look at a possible implementation logic of a more
typical instruction is shown in Figure 4.

The s1t instruction is described in the reference card at the end of RVALP as:
rd < (rsl1 <rs2) ? 1 : 0, pc < pct+d

Therefore the instruction and simulation details will be rendered as shown in Figure 8 and can be
summarized as:

slt x4,x14,x15 // x4 = (0xf0f0f0f0 < 0xf0f0f0f0) ? 1 : O = 0x00000000

Page 11 of 13

Hardik Patel

Hardik Patel

Hardik Patel

RISC-V Simulator

The = 0x00000000 at the right end of the above simulation detail comment represents the value that
is assigned to x4. In other words, it is the final value of the expression:

(0xf0£f0£f0f0 < 0xf0f0f0f0) 7 1 : O

Consider what happens when the the instruction: slt x4,x4,x15 is simulated. In order to be able to
render the simulation summary comment that shows the values of all the registers involved before and
after the instruction simulation, it will be necessary to extract the associated register values before val
in Figure 4 is calculated and it must not be stored into the rd register x4 until after the simulation
comment has been printed.

The code in Figure 4 addresses this problem by its use of the val variable as a holder for the calculated
result of the instruction. Then it prints the simulation comment (if needed). Finally, it stores the
result into the rd register using regs.set(rd, val) and increments the pc register.

The same problem occurs with the pc register in the jump and branch instructions. Always be careful
that your renderings are of the correct (before/after) values of any registers involved.

Page 12 of 13

Hardik Patel

Hardik Patel

— RISC-V Simulator

winans@x570:~$./rv32i -i allinsns5.bin

00000000: abcde237 1lui x4,0xabcde // x4 = Oxabcde000

00000004: abcde217 auipc x4,0xabcde // x4 = 0x00000004 + Oxabcde000 = Oxabcde004

00000008: 008000ef jal x1,0x00000010 // x1 = 0x0000000c, pc = 0x00000008 + 0x00000008 = 0x00000010
00000010: 01008267 jalr x4,16(x1) // x4 = 0x00000014, pc = (0x00000010 + 0x0000000c) & Oxfffffffe = 0x0000001c
0000001c: feb59ce3 bne x11,x11,0x00000014 // pc += (0xf0f0f0f0 !'= OxfOfOf0f0 ? Oxfffffff8 : 4) = 0x00000020
00000020: fe004ae3 Dblt x0,x0,0x00000014 // pc += (0x00000000 < 0x00000000 ? Oxfffffff4d : 4) = 0x00000024
00000024: fe0558e3 bge x10,x0,0x00000014 // pc += (0xfOf0f0f0 >= 0x00000000 7 OxfffffffO : 4) = 0x00000028
00000028: fe0066e3 bltu x0,x0,0x00000014 // pc += (0x00000000 <U 0x00000000 ? Oxffffffec : 4) = 0x0000002c
0000002c: feaO74e3 bgeu x0,%x10,0x00000014 // pc += (0x00000000 >=U O0xfOfO0f0f0 ? Oxffffffe8 : 4) = 0x00000030
00000030: 00000463 beq x0,x0,0x00000038 // pc += (0x00000000 == 0x00000000 ? 0x00000008 : 4) = 0x00000038
00000038: 00b01463 bne x0,x11,0x00000040 // pc += (0x00000000 != OxfOf0f0f0 7 0x00000008 : 4) = 0x00000040
00000040: 00054463 Dblt x10,x0,0x00000048 // pc += (0xfOf0f0f0 < 0x00000000 ? 0x00000008 : 4) = 0x00000048
00000048: 00005463 bge x0,x0,0x00000050 // pc += (0x00000000 >= 0x00000000 7 0x00000008 : 4) = 0x00000050
00000050: 00a06463 bltu x0,x10,0x00000058 // pc += (0x00000000 <U 0xfOf0f0f0 7 0x00000008 : 4) = 0x00000058
00000058: 00007463 bgeu x0,x0,0x00000060 // pc += (0x00000000 >=U 0x00000000 ? 0x00000008 : 4) = 0x00000060
00000060: 01000313 addi x6,x0,16 // x6 = 0x00000000 + 0x00000010 = 0x00000010

00000064: 01034203 1lbu x4,16(x6) // x4 = zx(m8(0x00000010 + 0x00000010)) = 0x000000e3

00000068: 00134203 1lbu x4,1(x6) // x4 = zx(m8(0x00000010 + 0x00000001)) = 0x00000082

0000006c: 01035203 1lhu x4,16(x6) // x4 = zx(m16(0x00000010 + 0x00000010)) = 0x00004ae3

00000070: 00a35203 1lhu x4,10(x6) // x4 = zx(m16(0x00000010 + 0x0000000a)) = 0x0000febO

00000074: 01030203 1b x4,16(x6) // x4 = sx(m8(0x00000010 + 0x00000010)) = Oxffffffe3

00000078: 01130203 1b x4,17(x6) // x4 = sx(m8(0x00000010 + 0x00000011)) = 0x0000004a

0000007c: 01031203 1h x4,16(x6) // x4 = sx(m16(0x00000010 + 0x00000010)) = 0x00004ae3

00000080: 00231203 1h x4,10(x6) // x4 = sx(m16(0x00000010 + 0x0000000a)) = OxfffffebO

00000084: 01032203 1w x4,16(x6) // x4 = sx(m32(0x00000010 + 0x00000010)) = 0xfeOO4ae3

00000088: ff£f00293 addi x5,x0,-1 // x5 = 0x00000000 + Oxffffffff = Oxffffffff

0000008c: 0eb500ea3 sb x5,253(x0) // m8(0x00000000 + 0x000000fd) = 0x000000ff

00000090: 0e501823 sh x5,240(x0) // m16(0x00000000 + 0x000000f0) = OxO000ffff

00000094: 0e502a23 sw x5,244(x0) // m32(0x00000000 + 0x000000f4) = Oxffffffff

00000098: 44260213 addi x4,x12,1234 // x4 = 0xf0f0f0f0 + 0x000004d2 = 0xf0f0f5c2

0000009c: 4d262213 slti x4,x12,1234 // x4 = (0xfO0f0f0f0 < 1234) ? 1 : 0 = 0x00000001

000000a0: 4d263213 sltiu x4,x12,1234 // x4 = (0xfO0f0f0f0 <U 1234) ? 1 : 0 = 0x00000000

000000a4: 4d264213 xori x4,x12,1234 // x4 = 0xfO0f0f0f0 ~ 0x000004d2 = 0xf0f0f422

000000a8: 4d266213 ori x4,x12,1234 // x4 = 0xf0f0f0f0 | 0x000004d2 = OxfOf0f4f2

000000ac: 4d267213 andi x4,x12,1234 // x4 = 0xf0f0f0f0 & 0x000004d2 = 0x000000d0

000000b0: 00c69213 slli x4,x13,12 // x4 = 0xfO0f0f0f0 << 12 = 0x0f0f0000

000000b4: 00c6d213 srli x4,x13,12 // x4 = 0xf0f0f0f0 >> 12 = 0x000f0fO0f

000000b8: 40c6d213 srai x4,x13,12 // x4 = 0xfOf0f0f0 >> 12 = OxffffOfOf

000000bc: 00£70233 add x4,x14,x15 // x4 = 0xf0f0f0f0 + OxfOf0f0f0 = OxeleleleO

000000c0: 40£f70233 sub x4,x14,x15 // x4 = 0xf0f0f0f0 - 0xfO0f0f0f0 = 0x00000000

000000c4: 00£f711b3 sll x3,x14,x15 // x3 = 0xf0f0f0f0 << 16 = 0xf0f00000

000000c8: 00£f72233 slt x4,x14,x15 // x4 = (0xf0f0f0f0 < 0xfOf0f0f0) 7 1 : 0 = 0x00000000

000000cc: 00£73233 sltu x4,x14,x15 // x4 = (0xf0f0f0f0 <U 0xf0f0f0f0) ? 1 : O = 0x00000000

000000d0: 00£74233 xor x4,x14,x15 // x4 = 0xf0f0f0f0 ~ 0xfO0f0f0f0 = 0x00000000

000000d4: 00f751b3 srl x3,x14,x15 // x3 = 0xf0f0f0f0 >> 16 = 0x0000f0f0

000000d8: 40f751b3 sra x3,x14,x15 // x3 = 0xf0f0f0f0 >> 16 = OxfffffOf0

000000dc: 00f76233 or x4,x14,x15 // x4 = 0xfOf0f0f0 | OxfOf0f0f0 = O0xfOf0f0f0

000000e0: 00£77233 and x4,x14,x15 // x4 = 0xf0f0f0f0 & OxfOf0f0f0 = OxfOf0f0f0

000000e4: £14022f3 csrrs x5,0xf14,x0 // x5 =0

000000e8: 00100073 ebreak // HALT

Execution terminated. Reason: EBREAK instruction
50 instructions executed

Figure 8: exec() Instruction operation comment format.

Page 13 of 13

Hardik Patel

Hardik Patel

	Problem Description
	Files You Must Write
	registerfile.h and registerfile.cpp
	rv32i_hart.h and rv32i_hart.cpp
	rv32i_hart Public Member Functions
	rv32i_hart Private Member Functions
	rv32i_hart Protected Member Variables
	rv32i_hart Private Member Variables

	cpu_single_hart.h and cpu_single_hart.cpp
	cpu_single_hart Public Member Functions

	main.cpp

	Input
	Output
	How To Hand In Your Program
	Grading
	Hints

