
Summer 2022: CS 433/533-OV Operating Systems

Course

HW 2

Deadline: 07/17/2022 Sunday 11:59pm

Objectives

To implement a search program in C program using system calls for files and directories.

Description

Find is a popular UNIX command that traverses a file hierarchy and performs various

functions on each file in the hierarchy. The goal of this project is to implement a program

similar called search that supports the following functionality:

1. The program should take the directory name from where to start the file traversal as a command-

line argument and print the file hierarchy starting with the directory that is provided by the

command-line argument.

2. If the program is executed without any arguments, the program should print the file hierarchy

starting with the current directory where the program is executed. If there are no directories in

the current directory only files are listed one per line.

3. If there are other directories in the current directory then the directory name is first displayed on

a separate line and then the files in that directory are listed one-per-line with one-tab

indentation.

4. If a file is a symbolic link then the program should display the symbolic link name and in

parentheses the file name the link points to.

5. The program should also support three command-line options:

1. -S

This should list all files in the file hierarchy and print the file size next to the filename in

parenthesis.

2. -s <file size in bytes>

This should list all files in the file hierarchy with file size greater than or equal to the value

specified.

3. -f <string pattern>

This should list all files in the file hierarchy whose file name or directory name contains the

substring specified in the string pattern option.

6. The program should support not only each of these options separately but also any combination

of these options. For example: -S, -s 1024, -f jpg, -S -s 1024, -S -f jpg, -s 1024 -f jpg, -S -s 1024 -f

jpg, -S -f jpg -s 1024.

7. If both -s and -f options are specified then the program should list only those files that match

both criteria. The order of the options should not matter.

8. [Graduate Students Only] The program should support a fourth command-line option:

1. -t f - list regular files only

2. -t d - list directories only

Guidelines and Hints

1. The program must use function pointers similar to Figure 4.22 in the text book to implement the

functionality described above. You can use the logic and structure from Figure 4.22 as the starting

point to implement this program (make sure to go over the program in Figure 4.22 and

understand all the steps performed). However, please note that your final program must compile

and execute without any dependencies on the source code provided by the text book. You can

find a simple example on how to use function pointers in the funcptr.c file
2. You can use the getopt function to process the command-line options. See man 3 getopt for

more details and an example on how to use getopt function.

3. You should use a Makefile to compile and build this project and make sure to submit the Makefile

along with the rest of the source code.

4. You should upload all the source code, Makefile, and a README.txt file to Canvas. Please do not

upload any object files or executable files.

Program Documentation and Testing

1. Use appropriate names for variables and functions.

2. Use a Makefile to compile your program.

3. Include meaningful comments to indicate various operations performed by the program.

4. Programs must include the following header information within comments:

/*
Name:
BlazerId:
Project #:
To compile: <instructions for compiling the program>
To run: <instructions to run the program>
*/

5. Test your program with the sample test cases provided as well as your own test cases.

6. You can include any comments you may have about testing in the README.txt file.

Examples

Command Description

$./search List all files in the current directory where the program is executed.

$./search ../programs List all files in the directory ../programs (relative to the current directory)

$./search

/home/UAB/unan/CS433/programs
List all files in the directory /home/UAB/unan/CS433/programs (absolute path)

$./search -S ../programs List all files in the directory ../programs along with the file size

$./search -s 1024 List all files with size >= 1024 bytes in the current directory

$./search -s 1024 ../programs
List all files with size >= 1024 bytes in the ../programs (relative to the current

directory)

$./search -f jpg
List all files that have the substring “jpg” in their filename or directory name in

the current directory

$./search -f jpg -s 1024
List all files that have the substring “jpg” in their filename or directory name

with size >= 1024 in the current directory

$./search -s 1024 -f jpg
List all files with size >= 1024 and have the substring “jpg” in their filename or

directory name in the current directory

$./search -S -s 1024 -f jpg

List all files with size >= 1024 and have the substring “jpg” in their filename or

directory name in the current directory and include the file size next to the

filename

Sample Input and Output:

If you have the following directory structure as shown by the output of "ls -lR" command:

$ ls -R projects
projects:
fread.c fwrite.c project1 project2 project3 project4 read.c write.c

projects/project1:
project1.docx README

projects/project2:
project2.docx README

projects/project3:
project3.docx README

projects/project4:
project4.docx README

Then the output of find without any argument should look like this:

projects
 fread.c
 fwrite.c
 project1
 README
 project1.docx
 project2
 project2.docx
 README
 project3
 project3.docx
 README
 project4
 project4.docx

 README
 read.c
 write.c

It is not necessary that the order of the files are exactly as shown above, but the overall

structure should look similar to the output shown above. You can use the following tar file to

create the directory structure: projects.tar. Download this file and extract the file using

the command:

$ tar xvf projects.tar

Submission Guidelines

• Use best software engineering practices to design and implement this homework. The

next homework will extend the functionality provided by this program.

• Use functions and organize these functions in multiple files if necessary.

 • Use a Makefile to compile and build the multiple files.

• Document you code and include instructions for compiling and executing the program in

the README.txt file.

• Test your program and describe how you tested this program in the README.txt file.

• To submit this homework :

upload all the source files and documentation to Canvas.

 Grading Rubrics

Description Points

Implementation of search that lists the files and directories in the

specified format when executed with no arguments or when the

directory name is specified as an argument

30 points

Correct use of function pointers to implement the required functionality 20 points

Implementation of search that lists the files and directories in the

specified format when executed with -S option
10 points

Implementation of search that lists the files and directories in the

specified format when executed with -s option
10 points

Implementation of search that lists the files and directories in the

specified format when executed with -f option
10 points

Implementation of search that lists the files and directories in the

specified format when executed with multiple options (combination of -

S, -s, and -f)

10 points

Use of Makefile, source code documentation (including README..txt) 10 points

