
Optimal Noise Reduction
Objective
Give practice with Recursion in C.
Give practice with Backtracking in C.
Give practice with Stacks in C.

Story
The animals are still making too much noise. Some animals antagonize nearby animals and
cause them to emit screams of rage or cries of annoyance. However, some animals want to be
nearby other particular animals or they emit cries of longing. You have experimented with
different animals at different distances from each other. You have made some notes, and to
make your life easier you have represented each animal with a unique natural number index.
Now you feel that you now have enough information to move forward with your new plans.

The animals will be in a line of exhibits. Each animal will be in its own exhibit, and there are an
equal number of animals as exhibits. You have found that certain pairs of animals need to be
exactly some distance from each other. You want to find out if there is an arrangement of
animals that satisfies all the required distances.

Problem
Given the number of animals and the required distance pairs of certain animals, write a program
that prints a satisfying solution or informs the user that there is none if a solution does not exist.

Input
Input will begin with a line containing 2 integers, n and c (1 ≤ n ≤ 20; 0 ≤ c ≤ n choose 2),
representing the number of animal exhibits and the number of constraints. The following c lines
will each contain a constraint description in the form of 3 space separated integers, f, s, and d
(1 ≤ f, s ≤ n; f ≠ s; 0 ≤ c ≤ n - 2), representing the index of the first animal, the index of the
second animal, and the exact number of cages that should be in between those 2 animals.

For 7 of the 10 cases each animal will be in at most 1 constraint.

Output
Output should contain 1 line. In the event that a solution exists, you should print out n space
separated integers representing the animal index given in order from the first cage to the last. If
there is no solution the output should be only the phrase “No Solution.” (quotes for clarity).

Sample IO on next page.

Sample Input Sample Output

4 2
1 2 1
3 4 0

No Solution

5 4
1 2 1
1 3 1
1 5 0
2 5 2

2 4 1 5 3

Explanation
Case 1
There are 4 animals in this case. There are 2 constraints on the animals,

● The first constraint is that animals 1 and 2 must have exactly one exhibit in between
them.

● The second constraint is that animals 3 and 4 must have no cages between them.
No matter how you arrange the animals. There is no arrangement (permutation) that will ensure
that all the constraints are met.

Here is an arrangement where the first constraint is met but not the second.

Here is an arrangement where the second constraint is met but not the first.

Case 2
There are 5 animals in the second case, and 4 constraints. The constraints are the following,

● Animals 1 and 2 should have a single cage between them.
● Animals 1 and 3 should have a single cage between them.
● Animals 1 and 5 should have no cages between them.
● Animals 2 and 5 should have two cages between them.

There are valid arrangements. Below is one of them

Another acceptable arrangement would be 3 5 1 4 2.

Hints
Permutation Like: You need to find a valid permutation of animals in cages.

Constraints: There are constraints on the permutations. If your partial permutation violates a
constraint, then you should skip the rest of the permutation.

Unconstrained Animals: Animals that are unconstrained can cause a significant impact on
performance. If you place an unconstrained animal at some location during your recursive
function, and find no solution, then placing a different unconstrained animal at the same location
at this point in recursion will also result in no solution. Handling this case can greatly improve
performance in cases with many unconstrained animals.

Ordered placement: I recommend placing animals from one end of the permutation to the
other (for reasons mentioned below).

Forced Moves: When you place an animal with constraints, any unplaced animal that is
constrained with the recently placed animal should have their own placement forced. If you are
placing animals from left to right, the left option will not be available for any unplaced animal
(assuming this placement is not because of a different forced placement).

For example, suppose we have placed animals in spots 1, 2, and 3 and we place animal 10 at
spot 4 and animal 9 (which is unplaced) needs to have 1 cage in between them and animal 10.
Then we know that animal 9 must go in spot 6. Otherwise the constraint would be violated.

Grading Criteria
● Good comments, whitespace, and variable names

○ 15 points
● No extra input output (e.g. input prompts, “Please enter the number of friends:”)

○ 10 points
● Prevent reusing an animal multiple times in your arrangement

○ 10 points
● Check for constraint violations for each placed animal.

○ 5 points
● After using an animal for some possible arrangement make sure to undo any changes to

allow for reusing the animal in the future.
○ 10 points

● Programs will be tested on 10 cases
○ 5 points each

No points will be awarded to programs that do not compile using “gcc -std=gnu11 -lm”.

Sometimes a requested technique will be given, and solutions without the requested technique
will have their maximum points total reduced. For this problem use backtracking. Without this
programs will earn at most 50 points!

Any case that causes a program to return a non-zero return code will be treated as wrong.
Additionally, any case that takes longer than the maximum allowed time (the max of {5 times my
solutions time, 10 seconds}) will also be treated as wrong.

No partial credit will be awarded for an incorrect case.

Challenge: If you want to give yourself a challenge, try writing a program that outputs an
optimal order of animals.

