Lab 4: HTTP Web Client and Server (15 Points)

1 Download Lab

Download the Lab 4 files from Brightspace. The source code will be inside the directory “Lab4/”. You
must use the environment from Lab 0 to run and test your code. Next, open a terminal and “cd” into
the “Lab4/” directory. Now you are ready to run the lab!

2 HTTP Web Page Downloader (4 Points)

There is a very useful program called “wget”. It is a command line tool that you can use to download
a web page like this:

$ wget http://www.gnu.org/software/make/manual/make.html

This will download the make manual page, “make.html”, and save it in the current directory. “wget”
can do much more (e.g., downloading a whole web site). See the manual for “wget” for more info.

For the first part of this lab, your task is to write a limited version of “wget”, which we will call
“http_client”, that can download a single file. You will do all your implementation inside the file
“http_client.c” inside the “http_client” directory. To build and run the code, do the following:
First, go inside the “http_client” directory,

$ cd http_client

Next, compile the code,

$ make

Finally, run the code,

$./http_client [host] [port number] [filepath]

For example, . /http_client www.gnu.org 80 /software/make/manual/make.html

You must build, run, and test your code on ecegrid using the environment from Lab 0. If your
code does not run in that environment, you will not get any credit!

In the above command, you give the components of the URL separately in the command line — (1) the
server host, (2) the server port number (which will always be 80 for HTTP), and (3) the file path. The
program will download the given file and save it in the current directory. So in the example above, it
should produce “make.html” in the current directory. It should overwrite an existing file.

Some useful hints:

1. The program should open a TCP socket connection to the host and port number specified in the
command line, and then request the given file using HTTP/1.x protocol.
(See http://www.jmarshall.com/easy/http/ for the details of HTTP/1.x protocol).
2. An HTTP GET request looks like this:
GET /path/file.html HTTP/1.0\r\n
[zero or more headers]\r\n
[blank linel\r\n
Include the following header in your request:

Host: <the_host_name_you_are_connecting_to>:<port_number>

http://www.jmarshall.com/easy/http/
Mridul Poojary

Mridul Poojary

3. The response from the web server will look something like this:
HTTP/1.0 200 OK\r\n
Date: Fri, 31 Dec 2020 23:59:59 GMT\r\n
Content-Type: text/html\r\n
Content-Length: 1354\r\n
[blank linel\r\n

[file content]

There might be slight variations in the formats of responses from different servers. Go through
the document in Step 1 (in particular, this section) to ensure that your parser is robust.

The code ”200” in the first line indicates that the request was successful. If it's not “200”, the
program should print the first line of the response to the terminal (stdout) and exit.

You will need to extract the file name from file path (for example, extract make.html from file
path /software/make/manual/make.html), create a new file with extracted file name in the cur-
rent directory, and write the received file content into that file.

You should use the “Content-Length” value to figure when to stop receiving data from the
web server and close the TCP connection. If the “Content-Length” field is not present in the
response header, print the following error message to the terminal (stdout) and exit:

Error: could not download the requested file (file length unknown)
4. Some useful Clibrary functions for parsing—“strchr()”, “strrchr ()”, “strtok ()”, “strstr ()”

5. You program should be able to download any type of file, not just HTML files. Test your code by
downloading all the different files on the web site http://www.gnu.org/software/make/manual/.

Use “write()” or “fwrite()” to write to the file in byte chunks. This is important to make your
solution work for all different file formats, e.g., non-ASCII files such as pdf and image files.
Functions like “fprintf ()” might not work! To verify correctness, also download the file
using “wget” and make sure that it exactly matches the file downloaded by your program.

3 HTTP Web Server

For the second part of the lab, your task is to write a HTTP web server using sockets interface. This
task has two sub-tasks as described in Sections 3.1 and 3.2 respectively. You will implement both the
sub-tasks in the file“http_server.c” inside the “http_server” directory.

To build the code, run:

$ cd http_server
$ make

You must build, run, and test your code for both Sections 3.1 and 3.2 on ecegrid using the envi-
ronment from Lab 0. If your code does not run in that environment, you will not get any credit!

3.1 Task 1: Serving static contents (7 Points)

In this part, you will write a web server that serves static content. The top level directory (called the
“web root”) for your HTML files will be the “Webpage/” directory provided with the lab. The web
server will only serve contents inside the web root directory. For testing, you can add/remove/modify
contents inside web root. We can also do the same while evaluating your submission.

https://www.jmarshall.com/easy/http/#tolerant
http://www.gnu.org/software/make/manual/
Mridul Poojary

Mridul Poojary

To start the web server, run:
$./http_server [SERVPORT] [DBPORT]

The “SERVPORT” argument specifies the port number on which the web server would run, and “DBPORT”
argument specifies the port number on which the database server would run (used in Section 3.2).
Choosing the SERVPORT and DBPORT values:

To avoid port number clashes between different lab groups running their code at the same time on
the same ecegrid machine, please follow the following convention for choosing the port numbers:

1. Choose “SERVPORT” value as 8000 + Group Number
So, if your group number is 38, choose “SERVPORT” value 8038
If your group has two members, and both of you want to run the code at the same time, then
choose the “SERVPORT” values as 8000 + Group Number and 9000 + Group Number respectively.
2. Choose “DBPORT” value as 53000 + Group Number
So, if your group number is 38, choose “DBPORT” value 53038

If your group has two members, and both of you want to run the code at the same time, then
choose the “DBPORT” values as 53000 + Group Number and 54000 + Group Number respectively.

The content served by the web server should be accessible through a web browser running on the
ecegrid machine by typing the following URL (assuming the web server is running on port 8888):

http://localhost:8888/path/to/content/relative/to/web/root

For example, URL http://localhost:8888/index.html should display file “Webpage/index.html”.

Writing a web server is not a trivial task. Here is the list of what is expected and what is not expected
from your web server:

1. The web server will be iterative, i.e., it will serve client requests one request at a time. The
server should close the TCP socket (returned by the “accept ()” call) after serving each request.
In practice, most web servers are concurrent, i.e., they could serve multiple client requests in
parallel using multithreading or multiprocessing (e.g., using “fork()”).

2. The web server will only support the GET method. If a browser sends other methods (POST, HEAD,
PUT, for example), the server responds with status code 501. Here is a possible response:

HTTP/1.0 501 Not Implemented\r\n
[blank linel\r\n
<html><body><h1>501 Not Implemented</h1></body></html>

Note that server adds a little HTML body for the status code and the message. Without this, the
browser will display a blank page. This should be done for all status codes except 200.

3. Our server will be strictly HTTP/1.0 server. That is, all responses will say “HTTP/1.0”, and all
successful responses will include status code “200 OK”.

The server will accept GET requests that are either HTTP/1.0 or HTTP/1.1 (most browsers these
days send HTTP/1.1 requests). But it will always respond with HTTP/1.0. The server should
reject any other protocol and/or version, responding with 501 status code.

4. The server should also check that the request URI (the part that comes after GET) starts with “/”.
If not, it should respond with “400 Bad Request”.

Mridul Poojary

Mridul Poojary

Mridul Poojary

5.

10.

In addition, the server should make sure that the request URI does not contain “/../” and it
does not end with “/..” because allowing “..” in the request URI is a big security risk—the
client will be able to fetch a file outside the web root. If true, respond with “400 Bad Request”.

Note: Most modern browsers automatically check for bad URL requests in points 4 and 5, and
appropriately format the URL before sending it to the server. So, to test points 4 and 5, you can
use your “http_client” instead of the browser (e.g., . /http_client localhost 8888 /../).

The server must log each request to terminal (stdout) like this:
128.59.22.109 "GET /index.html HTTP/1.1" 200 0K
It should show the client IP address, the entire request line, and the status code and reason

phrase that the server just sent to the browser (Figure 1).

vagrant@ubuntu:/vagrant/assignment4-sol/http_server$./http_server
10.0.2.2 "GET / HTTP/1.1" 200 OK

10.0.2.2 "GET /javascripts/scale.fix.js HTTP/1.1" 200 0K
10.0.2.2 "GET /pic.jpg HTTP/1.1" 200 OK

10.0.2.2 "GET / HTTP/1.1" 200 OK

10.0.2.2 "GET /pic.jpg HTTP/1.1" 200 OK

10.0.2.2 "GET /stylesheets/styles.css HTTP/1.1" 200 0K
10.0.2.2 "GET /stylesheets/pygment_trac.css HTTP/1.1" 200 OK
10.0.2.2 "GET /javascripts/scale.fix.js HTTP/1.1" 200 OK
10.0.2.2 "GET /stylesheets/styles.css HTTP/1.1" 200 0K
10.0.2.2 "GET /stylesheets/pygment_trac.css HTTP/1.1" 200 OK
10.0.2.2 "GET /?key=cute+cat HTTP/1.1" 200 OK

10.0.2.2 "GET /?key=fat+cat HTTP/1.1" 404 Not Found

10.0.2.2 "GET /favicon.ico HTTP/1.1" 404 Not Found

10.0.2.2 "GET /7key=cute+cat HTTP/1.1" 408 Request Timeout
10.0.2.2 "GET /factlistl.html HTTP/1.1" 200 OK

10.0.2.2 "GET /stylesheets/styles.css HTTP/1.1" 200 OK
10.0.2.2 "GET /stylesheets/pygment_trac.css HTTP/1.1" 200 OK
10.0.2.2 "GET /pic.jpg HTTP/1.1" 200 OK

10.0.2.2 "GET /javascripts/scale.fix.js HTTP/1.1" 200 OK

Figure 1: Sample terminal (stdout) output.

You must log the requests in the exact format as shown in Figure 1. You must not print anything
else to the terminal. Violations of these guidelines would result in a 10% grade penalty.

If the request URI ends with “/”, the server should treat it as if there were “index.html” ap-
pended to it. For example, given

http://localhost:8888/
the server will act as if it had been given

http://localhost:8888/index.html
If the request URI is a directory, but does not have a “/” at the end, then you should append
“index.html” to it.

Use “stat ()” function to determine if a path is a directory or a file.
The server sends “404 Not Found” if it is unable to open the requested file.

For reading the file, use “fread()” or “read()”. You should read the file in chunks and send it
to the client as you read each chunk. Do not use “strlen()” to figure the length of buffer that
you are sending to the client—“strlen()” will stop counting as soon as it encounters the first
NULL character. Instead use the return value from “fread()”/“read()”. The recommended
chunk size is 4096 bytes, which is the optimal buffer size for disk I/O for many OS/hardware.

Mridul Poojary

Mridul Poojary

3.2 Task 2: Serving dynamic contents (4 Points)

In this part, you will add a database service to your web server. Web servers often have to contact
a database to serve certain client requests. In this lab, clients can request a cat picture by entering a
search string in the textbox displayed on the web page. On getting such a request, the web server will
contact the database of cat pictures, and respond with the cat picture requested by the client.

To start the database server, run:

$./db_server [DBPORT]

Next, start the web server in a different terminal,
$./http_server [SERVPORT] [DBPORT]

The “SERVPORT” and “DBPORT” values must be chosen as described in Section 3.1.

Some useful hints:

1. If the current URL in your browser ishttp://localhost :8888/, and you enter the search string
”cute cat” in the textbox and submit, the URL in the browser will now point to,

http://localhost:8888/7key=cute+cat

and the web server will receive the request URI “/7key=cute+cat”. You should extract the
search string ”cute cat” from the URI and send it to the database server.

2. The web server will communicate with the database server over a UDP socket (“SOCK_DGRAM”).
The database server’s IP address and port number are defined in the macros “DBADDR” and
“DBPORT” respectively inside the file “http_server.c”.

3. On receiving a search string, the database server will append ”.jpg” to the search string, and
search for the file with that name inside the directory “cat_database”. If found, the database
server will send the file to the web server in UDP packets of size 4K bytes each. The web server
should relay the data received in those UDP packets to the client over the TCP connection. Once
the entire file has been sent, the database server will send a final UDP packet containing the
string “DONE”. The web server should stop receiving once it receives this final packet. Note
that the web server should not relay the contents of this final packet to the client.

4. If the file is not found in the database, the database server will respond with a UDP packet
containing the string “File Not Found”. On receiving this packet, the web server should respond
to the client with “404 Not Found”.

5. If the database server is not responding, the web server should not wait indefinitely for the
response. Instead, it should timeout after some time interval (e.g., 5 seconds), and respond to
the client with “408 Request Timeout”.

To test this functionality, simply do not start the database server. Then all client requests for cat
pictures should timeout.

One way to implement timeout is to make the UDP socket non-blocking, and use the “select ()”
system call to determine when there is some data to be read. The “select()” system call has
an argument of type “struct timeval”, which can be set to the timeout value. If no data is
received by the socket within the timeout interval, “select ()” will return 0.

6. Make sure that the logging to the terminal (Figure 1) that you implemented in Section 3.1 also
works for cat picture requests, as illustrated in Figure 2.

Mridul Poojary

Mridul Poojary

10.0.2.2 "GET /?key=cute+cat HTTP/1.1" 200 0K

10.0.2.2 "GET /?key=fat+cat HTTP/1.1" 404 Not Found
10.0.2.2 "GET /favicon.ico HTTP/1.1" 404 Not Found
10.0.2.2 "GET /?key=cute+cat HTTP/1.1" 408 Request Timeout

Figure 2: Sample terminal (stdout) output for cat picture requests.

4 Frequently Asked Question

4.1 How to get rid of error “bind: address already in use” while running http_server?

Wait for a few seconds, and it will go away. Or, run the following command:
kill $(1sof -i :8888 | awk 'NR>1 {print $2}')

5 Submission

You are required to submit two files “http_client.c” and “http_server.c” on Brightspace.
Do not submit a compressed (e.g., .zip) file.

Mridul Poojary

Mridul Poojary

Sample Browser Outputs

_ Cat lovers x

cC © [localhost:8888 - U W noee

Hello Cat lovers!

You may love your cat, but you may not be fully aware of just how cool your cat — and their
overall species — really is. For example, did you know that cats have an extra organ that allows
them to taste scents? Or that they developed meowing as a way to communicate exclusively
with humans? Clearly, there’s more to your little feline friend than meets the eye. So, to help
you fully appreciate how awesome cats are, here is a list of the most amusing cat facts that you
can share with your friends and family.

(L Amazing Cat Facts | Care.com

Search for Cat Pictures

Search

Facts About Cat Anatomy & Physiology
Facts About Cat Health & Wellness
Facts About Cat Communication Cues

Facts About Quirky Cat Behaviors

_ Catlovers x

lie cC o © [localhost:8888/factlist2.html - U W Ineo®eaoe

Facts About Cat Health & Wellness

e A cat's average lifespan increased by a year over the span of time between 2002 and 2012,
according to a study by Banfield Pet Hospital .

e According to The Huffington Post, cats typically sleep for 12 to 16 hours a day.

e Cats are crepuscular, which means that they're most active at dawn and dusk.

Cats are fastidious creatures about their “bathroom.” If you have more than one cat, you
should have one litter box for each .

Cats can spend up to a third of their waking hours grooming.

Cats live longer when they stay indoors .

Search for Cat Pictures

Cats' purring may be a self-soothing behavior, since they make this noise when they're ill or

distressed, as well as when they're happy.
Search

Cats will refuse an unpalatable food to the point of starvation.

Despite popular belief, many cats are actually lactose intolerant .

Female cats have the ability to get pregnant when they are only 4 months old !

Grapes and raisins , as well as onions, garlic, and chives, are all extremely harmful foods for
cats. Grapes and raisins can cause kidney failure — although the reasoning behind that isn't
clear. Meanwhile, onions, garlic, and chives wreak havoc on your cat’s gastrointestinal system
and can cause anemia.

Mridul Poojary

Mridul Poojary

_ (JPEG Image, 1240 x 698 pixels) X [Ed

&« C © [localhost:8888/?key=cute+cat - O W m o oo 0

_ localhost:8888/factlist7.html x IER

"\(-‘ c © () localhost:8888/factlist7.html oo w Ineoee

404 Not Found

EEE -oocecrcer-ranca

(& C © D localhost:8888/?key=fat+cat . O W n o e

404 Not Found

_ ML LA R x

(6 C ® © [localhost:8888/?key=cute+cat oo b2 d noee

408 Request Timeout

Mridul Poojary

Mridul Poojary

	Download Lab
	HTTP Web Page Downloader (4 Points)
	HTTP Web Server
	Task 1: Serving static contents (7 Points)
	Task 2: Serving dynamic contents (4 Points)

	Frequently Asked Question
	How to get rid of error ``bind: address already in use" while running http_server?

	Submission

