
CS526 Enterprise and Cloud Computing
Stevens Institute of Technology—Fall 2022

Assignment Five—Serverless Computing

This assignment requires the use of Visual Studio 2022 or Visual Studio for Mac.
You are provided with two ASP.NET projects (Version 7.0, C#):
1. A Web application similar to that for the previous assignment, but with some

changes in its backend processing.
2. A project that contains three functions to be deployed in Azure Functions.

In the previous assignment, operations were performed in a synchronous fashion.
For example, uploading an image consisted of adding a metadata record to SQL
Database, and then uploading the image itself to blob storage. The Web application
does not respond back to user until all of these steps are completed. Similarly, when
an administrator approves an image, the application does not respond until the
database record has been updated.

In this assignment, we introduce intermediate queues for asynchronous processing.
When an image is submitted for upload, the application responds immediately back
to the user while the image is uploaded to blob storage. No attempt is made at this
point to add a metadata record to the database. Instead, the metadata is included
with the image upload. Completion of the upload triggers an Azure function,
UploadResponder, that inserts the metadata into a message and adds this message
to an Azure storage queue called approval-requests.

When an image approver reviews the images awaiting approval, the metadata for
these images is taken from the approvals request queue. If an image is approved, its
metadata is added to another queue, approved-images. Insertion of a message into
this queue triggers an Azure function, ApproveResponder, that inserts the metadata
for the image into the database. If an image is not approved, its metadata is added
to another queue, rejected-images. Insertion of a message into this queue triggers
an Azure function, RejectResponder, that deletes the image from blob storage.

For testing purposes, you will want to use the Consumption Plan for Azure
Functions. However, this does not support the use of SQL Database in a function. So,
although we continue to use SQL Database to store user information for
authentication and authorization, we store the image metadata in Table storage1.
The partition key for an image’s metadata record is the primary key for the user that
uploaded that image, so that metadata for all images for a user are stored in the
same partition. This means that the URI for an image is of the form:

https://.../Images/action-name/user-key/image-key

1 We could use Cosmos DB to store both user data and image metadata. We use Table storage for

simplicity, because it is supported for local development in the Azurite storage emulator.

The routing logic for this is specified in the application builder:

app.MapControllerRoute(
 name: "image",
 pattern: "Images/{action}/{userId}/{id}",
 defaults: new { controller = "Images" });

This is then used in tag helpers to specify links to actions for images:

<a asp-action="Details" asp-route-userId="@image.getUserId()"
 asp-route-id="@image.getId()">Details

getUserId() and getId() are helper functions in an image entity object, returning
its partition key and row key, respectively.

In the previous assignment, the Web application waited for an image to finish
uploading before providing a response to the user:

await blobClient.UploadAsync(...);

In this assignment, in the spirit of serverless computing, the application may
respond to the user immediately, while the upload proceeds in the background, with
any exceptions in background processing logged on that thread:

blobClient.UploadAsync(...)
 .ContinueWith(t => logger.LogError(t.Exception.Message),
 TaskContinuationOptions.OnlyOnFaulted);
return Task.CompletedTask;

The Azure functions are annotated to specify their triggers, and their queue outputs
where appropriate. For example, the function that responds to uploads to blob
storage is given by:

[Function("UploadResponder")]
[QueueOutput("approval-requests")]
public string Run(
 [BlobTrigger("images/{blobname}",
 Connection = "StorageConnectionString")] string myBlob,
 string blobname,
 BlobProperties blobProperties,
 IDictionary<string,string> metadata,
 FunctionContext _context)

The connection string is specified as the value of the StorageConnectionString
property in local.settings.json. This descriptor is only used for development and is
not included in a deployment in the cloud, so the connection string must be specified
as the value of the StorageConnectionString environment variable when the

function is deployed. When this function returns a string, it is inserted as the
payload of a message in the specified queue. Azure queues require that the payload
be an ASCII string representing a Base64 encoding:

string json = JsonConvert.SerializeObject(image);
byte[] data = Encoding.UTF8.GetBytes(json);
return Convert.ToBase64String(data);

For development purposes, you should use the Azurite2 local Azure storage
emulator to test usage of the Blob and Table storage locally. You can use SQL Server
as in previous assignments as a local database server while development. The
descriptor launchSettings.json specifies profiles for running the Web app in
Development mode and in Production mode. Use the latter when running in the
cloud. You will need to edit the descriptor appsettings.json files with your
production connection strings, after setting up storage in Azure. The development
descriptor appsettings.Development.json specifies connection strings for the
Azurite storage emulator. You can use the Azure Storage Explorer3 to view the
storage, either in Azurite or in Azure.

When developing locally, you can only run one app at a time in Visual Studio.
Therefore you need to run the Web app to upload an image to blob storage, then run
the functions project to process the upload and generate an approval request, then
run the Web app again to grant approval, then run the functions project again to
process the approval and insert the image metadata in the images table, then run
the Web app again to confirm that the image can now be seen via the Web app. You
will need to run a similar sequence to reject an image, confirming that it has been
deleted from blob storage.

Once you have your application running, deploy your application in Azure App
Service, and your functions in Azure Functions. You should be able to view Azure
storage using Storage Explorer as processing proceeds. You should demonstrate a
scenario when no images are awaiting approval, then upload an image, then see that
there is now a message in the approval-requests queue, then see that image
awaiting approval in the Web app, then once this is approved there should be a
record in the images table (after processing a message inserted into the approved-
images queue by the Web app once approval is granted), and you can view this
image in the list of all images in the Web app.

Submission:
Submit your assignment as a zip archive file. This archive file should contain a
single folder with your name, with an underscore between first and last name. For
example, if your name is Humphrey Bogart, the folder should be named

2 https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite?tabs=visual-
studio.
3 https://azure.microsoft.com/en-us/products/storage/storage-explorer/

https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite?tabs=visual-studio
https://learn.microsoft.com/en-us/azure/storage/common/storage-use-azurite?tabs=visual-studio
https://azure.microsoft.com/en-us/products/storage/storage-explorer/

Humphrey_Bogart. This folder should contain a single folder for your solution
named ImageSharingServerless, with projects ImageSharingWithServerless.
ImageSharingFunctions and ImageSharingModels (providing some definitions
used by both the Web app and the Azure functions).

In addition, record mpeg videos demonstrating your deployment working. See the
rubric for further details of what is expected. Make sure that your name appears at
the beginning of the video, for example as the name of the administration user who
manages the Web app. Do not provide private information such as your email or cwid
in the video. Be careful of any “free” apps that you download to do the recording,
there are known cases of such apps containing Trojan horses, including key loggers.

