SDDS Fall - 2021 School of Software Design and Data Science

Assignment #1

Worth: 10% of final grade

Account Ticketing System

Milestone Worth Due Date Submission Required
1 10% (Suggested Target: October 29™") NO
2 40% November 5" (23:59 EST) YES
3 10% (Suggested Target: November 8 / 9t) NO
4 40% November 12t (23:59 EST) YES
Introduction

This is the first of two assignments. Assignment #2 builds upon and extends Assignment #1. Each
assignment is broken down into critical deadlines called milestones. Implementing projects using
milestones will help you stay on target with respect to timelines and balancing out the workload.

By the end of assignment #2 (milestone #4), you will have created a basic account and ticketing
system. Think of the ticketing component as a tracking system for customer reported problems.
Customers will phone or email for support when they need to report a problem. The person handling
the support request (agent) will create a ticket for the request that contains the details of the problem.
Each ticket also includes a brief message log of the dialogue exchanged between the customer and the
agent. The agent is also responsible for maintaining basic account management that includes
customer contact information.

The account ticketing system application will be incrementally built (adding more functionality and
components) with each assignment milestone. Assignment #1 milestones 1-2 are focused on providing
helper functions that will aid you in the development of the overall solution in future milestones.
These functions will streamline your logic and simplify the overall readability and maintainability of
your program by providing you with established routines that have been thoroughly tested for
reliability and eliminate unnecessary code redundancy (so use them whenever possible and don't
duplicate logic already done).

Preparation
Download or clone the Assignment 1 (A1) from https://github.com/Seneca-144100/IPC-Project

In the directory: A1/MS1 you will find the Visual Studio project files ready to load. Open the project
(almsl.vexproj) in Visual Studio.

Note: the project will contain only one source code file which is the main tester “almsi.c”.

Milestone — 1 (Worth 10%, Target Due Date: October 29%)

Milestone — 1 does not require a submission and does not have a specific deadline, however, you
should target to have this part completed no later than October 29" to ensure you leave enough time
to complete Milestone — 2 which must be submitted and is due November 5t

SDDS School of Software Design and Data Science

https://github.com/Seneca-144100/IPC-Project

SDDS Fall - 2021 School of Software Design and Data Science

Milestone-1 includes a unit tester (alms1.c). A unit tester is a program which invokes your functions,
passing them known parameter values. It then compares the results returned by your functions with
the correct results to determine if your functions are working correctly. The tester should be used to
confirm your solution meets the specifications for each “helper” function. The helper functions should
be thoroughly tested and fail-proof (100% reliable) as they will be used throughout your assignment
milestones. An optional matrix submitter tester is also at your disposal so you can receive additional
confirmation that your solution meets the minimum milestone requirements.

Note: Inevitably, all these functions will be tested as part of the Milestone #2 submission

Development Suggestions

You will be developing several functions for this milestone. The unit tester in the file “alms1.c”
assumes these functions have been created and, until they exist, the program will not compile.

Strategy—1
You can comment out the lines of code in the “alms1.c” file where you have not yet created and

defined the referenced function. You can locate these lines in the function definitions (after the main
function) and for every test function, locate the line that calls the function you have not yet developed
and simply comment the line out until you are ready to test it.

Strategy — 2
You can create “empty function shells” to satisfy the existence of the functions but give them no logic
until you are ready to program them. These empty functions are often called stubs.

Review the specifications below and identify every function you need to develop. Create the necessary
function prototypes (placed in the .h header file) and create the matching function definitions (placed
in the .c source file), only with empty code blocks (don’t code anything yet). In cases where the
function MUST return a value, hardcode (temporarily until you code the function later) a return value
so your application can compile.

Specifications

Milestone-1 will establish the function “helpers” we will draw from as needed throughout these two
assignments. These functions will handle routines that are commonly performed (greatly reduces code
redundancy) and provide assurance they accomplish what is expected without fail (must be reliable).

1. Create a module called “commonHelpers”. To do this, you will need to create two files:

“commonHelpers.h” and “commonHelpers.c” and add them to the Visual Studio project.

2. The header file (.h) will contain the function prototypes, while the source file (.c) will contain the
function definitions (the logic and how each function works).
e For each of these files, create a commented section at the top containing the following
information (you may want to use what was similarly provided to you in the workshops):
o Assignment #1 Milestone #1
o Your full name
o Your student ID number and Seneca email address
o Your course section code

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

3. The “commonHelpers.c” file will require the usual standard input output system library as well as

the new user library “commonHelper.h”, so be sure to include these.
4. Review the “almsl.c” tester file and examine each defined tester function (after the main
function). Each tester function is designed to test a specific helper function.

5. Two (2) functions are provided for you. Here are the function prototypes you must copy and place
into the “commonHelper.h” header file:

int currentYear(void);
void clearStandardInputBuffer(void);

The source code file “commonHelper.c” must contain the function definitions (copy and place the
function definitions below in the “commonHelper.c” file):

// Uses the time.h library to obtain current year information
// Get the current 4-digit year from the system
int currentYear(void)
{
time_t currentTime = time(NULL);
return localtime(¤tTime)->tm_year + 1900;

}
*Note: You will need to #include <time.h> system library for the above function to compile.

// As demonstrated in the course notes:
https://ict.senecacollege.ca//~ipcld4/pages/content/formi.html#buf
// Empty the standard input buffer

void clearStandardInputBuffer(void)

while (getchar() != '\n")
{

}

;5 // On purpose: do nothing

}

6. Each function briefly described below will require a function prototype to be placed in the
“commonHelpers.h” file, and their respective function definitions in the “commonHelpers.c” file.
The function identifiers (names) are provided for you however you are responsible for
constructing the full function prototype and definitions based on the descriptions below (there
are seven (7) functions in total):

e Function: getinteger
This function must:
o return an integer value and receives no arguments.
o getavalid integer from the keyboard.
o display an error message if an invalid value is entered (review the sample output for the
appropriate error message)
o guarantee an integer value is entered and returned.

SDDS School of Software Design and Data Science

https://ict.senecacollege.ca/~ipc144/pages/content/formi.html#buf

SDDS

SDDS

Fall - 2021

Hint: You can use scanf to read an
integer and a character ("%d%c") in
one call and then assess if the second
value is a newline character. If the
second character is a newline (the
result of an <ENTER> key press), scanf
read the first value successfully as an
integer. This technique can be used in
other “get” functions you need to
create for different data types!

If the second value (character) is not a
newline, the value entered was not an
integer or included additional non-
integer characters. If any invalid entry
occurs, your function should call the
clearStandardInputBuffer function,
followed by displaying an error
message and continue to prompt for a
valid integer. Review the following
flowchart that describes this process:

Function: getPositivelnteger
This function must:

School of Software Design and Data Science

Declare and Initialize
variable:
character "newLine" = 'x'

v

Declare variable:
integer "value"

Does variable
"newLine" equal a

Return "value"

Y

new line character?
(newLine == "\n')

Valid
Integer

Invalid Integer

User Input:
Scan to variables
"value" and
"newLine"
("%d%c")

Call

clearStandardinputBuffer

Does variable
"newLine" equal a

new line character?
(newLine == "\n')

Invalid
Integer

Display Error Message

o return an integer value and receives no arguments.
o perform the same operations as getinteger but validates the value entered is greater

than 0.

o display an error message if the value is a zero or less (review the sample output for the

appropriate error message).

o continue to prompt for a value until a value is greater than 0.
o guarantee a positive integer value is entered and returned.

Function: getDouble
This function must:

o return a double value and receives no arguments.
o getavalid double value from the keyboard.
o display an error message if an invalid value is entered (review the sample output for the

appropriate error message)

o guarantee a double value is entered and returned.
o Hint: Process is the same as described in the flowchart for getinteger only this is for a

double type

School of Software Design and Data Science

SDDS

Note

Fall - 2021 School of Software Design and Data Science

Function: getPositiveDouble
This function must:
o return a double value and receives no arguments.
o perform the same operations as getDouble but validates the value entered is greater
than 0.
o display an error message if the value is a zero or less (review the sample output for the
appropriate error message).
o continue to prompt for a value until a value is greater than 0.
o guarantee a positive double value is entered and returned.

Function: getintFromRange
This function must:
o return an integer value and receives two arguments:
= First argument represents the lower-bound of the permitted range.
= Second argument represents the upper-bound of the permitted range.
Note: You must provide meaningful parameter identifiers (names)
o performs the same operations as getinteger but validates the value entered is between
the two arguments received by the function (inclusive).
o display an error message if the value is outside the permitted range (review the sample
output for the appropriate error message).
o continue to prompt for a value until a value is between the permitted range (inclusive)
o guarantee an integer value is entered within the range (inclusive) and returned.

You will need to review the supplemental document “Introduction to C Strings”
(https://github.com/Seneca-144100/IPC-Project/tree/master/Al/Introduction%20t0%20C%20Strings.pdf)

before attempting to do the next two functions

SDDS

Function: getCharOption
This function must:
o return a single character value and receives one argument:
= an unmodifiable C string array representing a list of valid characters.
Note: You must provide a meaningful parameter identifier (name)
o get asingle character value from the keyboard.
o validate the entered character matches any of the characters in the received C string
argument.
Reminder: A C string will have a null terminator character marking the end of the array
o display an error message if the entered character value is not in the list of valid
characters (review the sample output for the appropriate error message)
Note: Include in the error message the C string permitted characters
o Continue to prompt for a single character value until a valid character is entered.
o Guarantee a single character value is entered within the list of valid characters (as

defined by the C string argument received) and returned.

School of Software Design and Data Science

https://github.com/Seneca-144100/IPC-Project/tree/master/A1/Introduction%20to%20C%20Strings.pdf

SDDS Fall - 2021

e Function: getCString

School of Software Design and Data Science

The purpose of this function is to obtain user input for a C string value with a length (number of
characters) between the character range specified in the 2" and 3™ arguments received

(inclusive).

This function:

o must receive three (3) arguments and therefore needs three (3) parameters:
= 1%t parameter is a character pointer representing a C string
Note: Assumes the argument has been sized to accommodate at least the upper-
bound limit specified in the 3" argument received
= 2™ parameter represents an integral value of the minimum number of

characters the user-entered value must be.

= 3" parameter represents an integral value of the maximum number of

characters the user-entered value can be.

o does not return a value, but does return a C string via the 1% argument parameter

pointer.

o must validate the entered number of characters is within the specified range. If not,
display an error message (review the sample output for the appropriate error message).
Note: If the 2"¥ and 3" arguments are the same value, this means the C string entered

must be a specific length.

o must continue to prompt for a C string value until a valid length is entered.
o guarantee’s a C string value is entered containing the number of characters within the
range specified by the 2"¥ and 3™ arguments (and return via the 15t argument pointer).

[IMPORTANT]

You are NOT to use any of the string library functions; you must manually determine the
entered C string length using a conventional iteration construct.

A1-MS1: Sample Output

Assignment 1 Milestone 1

TEST #1 - Instructions:

1) Enter the word 'error' [ENTER]

2) Enter the number '-100' [ENTER]
error

ERROR: Value must be an integer: m
LTIl r7i7177171177
TEST #1 RESULT: *** PASS ***

LITIIILIT T 777777

SDDS

School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

TEST #2 - Instructions:

1) Enter the number '-100' [ENTER]

2) Enter the number '200' [ENTER]

- 100

ERROR: Value must be a positive integer greater than zero: p{i4
L1117 77777077777777717777771771777

TEST #2 RESULT: *** PASS ***
LIT1ITT7777777707777771777777717777717777

TEST #3 - Instructions:

1) Enter the word 'error' [ENTER]

2) Enter the number '-4' [ENTER]

3) Enter the number '12' [ENTER]

4) Enter the number '-3' [ENTER]

eerror

ERROR: Value must be an integer: [

ERROR: Value must be between -3 and 11 inclusive: Wi
ERROR: Value must be between -3 and 11 inclusive: gE]
I171717077777770707777777777777777777777

TEST #3 RESULT: *** PASS ***

LITIITTTIIIIIL LTI 7r7777777

TEST #4 - Instructions:

1) Enter the number '14"' [ENTER]

14
LITLIITTITITIL I rrr777777777
TEST #4 RESULT: *** PASS ***
[1717170777777777777777777710717777777177

TEST #5 - Instructions:

1) Enter the word 'error’ [ENTER]
2) Enter the number '-150.75"' [ENTER]
eerron

ERROR: Value must be a double floating-point number: EME{-MyA
LTI rrr77r7777777

TEST #5 RESULT: *** PASS ***

LITITTITIIIII 777077707 707777777

TEST #6 - Instructions:

1) Enter the number '-22.11' [ENTER]

2) Enter the number '225.55' [ENTER]

2211

ERROR: Value must be a positive double floating-point number: m
LITTTTTTT77 7777777777777 777777777777777

TEST #6 RESULT: *** PASS ***
LITTTTTTTI0T 7777777 7777777717777717177177

TEST #7 - Instructions:

1) Enter the character 'R' [ENTER]

2) Enter the character 'p' [ENTER]

B)EEnter the character 'r' [ENTER]

IR

ERROR: Character must be one of [qwerty]: i
ERROR: Character must be one of [qwerty]: [§
LTI rrrrr777777777
TEST #7 RESULT: *** PASS ***

[ITITITIITIIL LIl rr7r77r77177777

SDDS School of Software Design and Data Science

SDDS

Fall - 2021 School of Software Design and Data Science

TEST #8: - Instructions:

1) Enter the word 'horse' [ENTER]

2) Enter the word 'SENECA' [ENTER]

ghorse

ERROR: String length must be exactly 6 chars:
L1117 77777077777777717777771771777

TEST #8 RESULT: SENECA (Answer: SENECA)
LIT1ITT7777777707777771777777717777717777

TEST #9: - Instructions:

1) Enter the words 'Seneca College' [ENTER]

2) Enter the word 'IPC' [ENTER]

giseneca Collegel

ERROR: String length must be no more than 6 chars: ji{e
[171717077777770707777777177777777777177

TEST #9 RESULT: IPC (Answer: IPC)
LTI 7r7777777

TEST #10: - Instructions:
1) Enter the word 'ipc' [ENTER]
2) Enter the word 'SCHOOL' [ENTER]

Rirc

ERROR: String length must be between 4 and 6 chars: Ee;[e[e]8

IITTTII0TI L7777 01777777777
TEST #10 RESULT: SCHOOL (Answer: SCHOOL)

[ITTITTT7777 7777777777 77777777777777177

Assignment #1 Milestone #1 completed!

Milestone — 1 Submission

1. Thisis a test submission for verifying your work only — no files will be submitted to your
instructor — this will test your functions and confirm the outputs match to the expected output.
2. Upload (file transfer) all your header and source files:
o commonHelpers.h
o commonHelpers.c
o almsl.c
3. Login to matrix in an SSH terminal and change directory to where you placed your source code.
4. Manually compile and run your program to make sure everything works properly:
gcc -Wall almsl.c commonHelpers.c -o msl <ENTER>
If there are no error/warnings are generated, execute it: ms1 <ENTER>
5. Run the submission command below (replace profname.proflastname with your professors
Seneca userid and replace NAA with your section):
~profName.proflastname/submit 144aims1/NAA_msl <ENTER>
6. Follow the on-screen submission instructions.
SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

Milestone — 2 (Worth 20%, Due Date: November 5t)

In Milestone — 2, will expand on what was done from Milestone — 1. You will need to copy the header
and source code files for the “commonHelpers” module to the Milestone — 2 directory and include
them in the Milestone — 2 Visual Studio project.

You will begin this milestone by creating some new data types in an “account.h” header file, and the
main function creates variable instances of those new types. You will prompt for user input and store
the entered values to the appropriate variable members. It is expected you will call functions from the
common helper library where appropriate. After data has been entered and stored, you will display
the information back to the user in a tabular format (review the sample output section).

Specifications

1. Inthe “account.h” header file, you will create three (3) new data types that will be used to represent an
account and related person demographic and user login information. These new data types will be
defined in the module “account” and will require you to create another header file called “account.h”
(add this new file to the Visual Studio project). We will NOT be creating a source code file for this
module yet (this will be done in a later milestone). Create the following new structures:

“Person”
e This structure has four (4) members. You must provide the appropriate data type and meaningful
identifiers/names for each described member:
o A Cstring that represents the person's full name (first name, middle name if applicable, and
surname) and should be able to store up to thirty (30) displayable characters.
o Aninteger type that represents the birth year of a customer.
A double floating-point type that represents the household income.
o A Cstring that represents the country the customer resides and should be able to store up
to thirty (30) displayable characters.

O

"

UserLogin”
e This structure has two (2) members. You must provide the appropriate data type and meaningful
identifiers/names for each described member:
o A Cstring that represents the user login name and should be able to store up to ten (10)
displayable characters.
o A Cstring that represents the password for the user and should be able to store up to eight
(8) displayable characters.
“Account”
e This structure has two (2) members. You must provide the appropriate data type and meaningful
identifiers/names for each described member:
o Aninteger type that represents the account number associated to a customer.
o Asingle character type that represents the account type (for example, an ‘A’ would
represent a customer service agent, and a ‘C’ would represent a customer).

2

2. Inthe “alms2.c” source code file, you will find three variables declared (“account”, “person”, and
“login”) which are instances of the new types you created in the “account.h” header file. You need to
provide the necessary code that will assign user input to each of the variable members. Use the
example output and the source code comments to help guide you in accomplishing this task.

SDDS School of Software Design and Data Science

SDDS

Reminder
You should be utilizing the common helper functions you created in Milestone — 1 as much as
possible where appropriate to help you do this task!

Fall - 2021

School of Software Design and Data Science

3. The last task you need to do, is complete the “displayAccount” function definition located after the
main function. The formatted table header is provided for you. To help you format the data values to
properly align with the header, you can use the following format specifiers in your printf statement for
the respective fields:

Column Name Format Specifier

Acct# %05d

Acct.Type %-9s

Birth %5d

Full Name %-15s

Income %11.2If

Country %-10s

Login %-10s

Password %8s

You will need to reference the appropriate arguments received by this function and their respective
members to provide your printf function with the required data.

A1-MS2: Sample Output

Assignment 1 Milestone 2

TEST #1 - Instructions:

1) Enter the word 'error’
2) Enter the number '-100'

error

[ENTER]
[ENTER]

ERROR: Value must be an integer:
LITTTTTTT7T 7777777777777 777777777777777

TEST #1 RESULT:

%k %k k PASS %k k k

L1170 07 777717777777 7771777771171777777

TEST #2 - Instructions:

1) Enter the number '-100'
2) Enter the number '200'

3 100

ERROR: Value must be a positive integer greater than zero:

[ENTER]
[ENTER]

[ITT1TTT70 7777777 7777777717777771777777

TEST #2 RESULT:

**% PpASS kkk

[ITT11TT707 777777 7777777717777771717777

TEST #3 - Instructions:

1) Enter the
2) Enter the
3) Enter the
4) Enter the
lerror

SDDS

word
number
number
number

‘error’ [ENTER]
'-4' [ENTER]
‘12" [ENTER]
'-3' [ENTER]

School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

ERROR: Value must be an integer: IE

ERROR: Value must be between -3 and 11 inclusive: [Wi
ERROR: Value must be between -3 and 11 inclusive: [E]
(11171177107 7777777777777777777/771/77//7/7/

TEST #3 RESULT: *** PASS ***

[ITIT1TITITIIL L7777 0717177777

TEST #4 - Instructions:

1) Enter the number '14' [ENTER]

14

L1117 77777077777777717777771771777
TEST #4 RESULT: *** PASS ***
[1717170777777777777777777777777177171717

TEST #5 - Instructions:

1) Enter the word 'error’ [ENTER]
2) Enter the number '-150.75' [ENTER]
eerror

ERROR: Value must be a double floating-point number: EME{- VA
LTI 77777777777
TEST #5 RESULT: *** PASS ***

[ITT1TTT707 77777777777 77717777771771777

TEST #6 - Instructions:

1) Enter the number '-22.11' [ENTER]

2) Enter the number '225.55' [ENTER]

322,11

ERROR: Value must be a positive double floating-point number: m
[I117107777777777777777777717771777177177

TEST #6 RESULT: *** PASS ***

LITTTTTTT77 7777777777777 777777777777777

TEST #7 - Instructions:

1) Enter the character 'R' [ENTER]

2) Enter the character 'p' [ENTER]

3)EEnter the character 'r' [ENTER]

R

ERROR: Character must be one of [qwerty]: H
ERROR: Character must be one of [qwerty]: [§
LTI rrr77r7777777
TEST #7 RESULT: *** PASS ***

LITITTTTIIIIL 777707717 7077177177777

TEST #8: - Instructions:

1) Enter the word 'horse' [ENTER]

2) Enter the word 'SENECA' [ENTER]

Rhorse

ERROR: String length must be exactly 6 chars:
LIl 777177171177

TEST #8 RESULT: SENECA (Answer: SENECA)

LITTIIILIT I 7771177

TEST #9: - Instructions:

1) Enter the words 'Seneca College' [ENTER]

2) Enter the word 'IPC' [ENTER]

giseneca College

ERROR: String length must be no more than 6 chars: pjde
LTIl r7777177777

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

TEST #9 RESULT: IPC (Answer: IPC)
IITT11T770777777777777777171777717717777

TEST #10: - Instructions:

1) Enter the word 'ipc’ [ENTER]
2) Enter the word 'SCHOOL' [ENTER]
>

ERROR: String length must be between 4 and 6 chars:
Ny
TEST #1@ RESULT: SCHOOL (Answer: SCHOOL)
L1117 77777077777777717777771771777

Account Data Input

Enter the account number:

ERROR: Value must be an integer: Bfef2[2)]

Enter the account type (A=Agent | C=Customer):
ERROR: Character must be one of [AC]:

ERROR: Character must be one of [AC]:

ERROR: Character must be one of [AC]: [

Person Data Input

Enter the person's full name (30 chars max):

Enter birth year (current age must be between 18 and 110):

ERROR: Value must be between 1911 and 2003 inclusive: pkk(z

ERROR: Value must be between 1911 and 2003 inclusive: pEli:]

Enter the household Income: $

ERROR: Value must be a double floating-point number: BEIlzJp}]

ERROR: Value must be a positive double floating-point number: [JH%
ERROR: Value must be a positive double floating-point number: pR3:PryiyL]
Enter the country (30 chars max.):

User Login Data Input

Enter user login (10 chars max): [[ARBEETJNNRNEY

ERROR: String length must be no more than 10 chars:
Enter the password (must be 8 chars in length):
ERROR: String length must be exactly 8 chars:
ERROR: String length must be exactly 8 chars:
ERROR: String length must be exactly 8 chars:

Acct# Acct.Type Full Name Birth Income Country Login Password

50001 AGENT Will Smith 1988 188222.75 CANADA MIBAgent-J agento@7

Assignment #1 Milestone #2 completed!

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

Reflection (Worth 20%, Due Date: November 5t")

Academic Integrity

It is a violation of academic policy to copy content from the course notes or any other published
source (including websites, work from another student, or sharing your work with others).

Failure to adhere to this policy will result in the filing of a violation report to the Academic Integrity
Committee.

Instructions

e Create a text file named “reflect.txt” and record your answers to the below questions in this file.

e Answer each question in sentence/paragraph form unless otherwise instructed.

e A minimum 300 overall word count is required (does NOT include the question).

e Whenever possible, be sure to substantiate your answers with a brief example to demonstrate your
view(s).

1. From the helper functions library, what function was the most challenging to define and clearly
describe the challenge(s) including how you managed to overcome them in the context of the
methods used in preparing your logic, debugging, and testing.

2. Describe how the “helper functions” library contributes toward making the code easier to read and
include in your analysis why the library will make your code easier to maintain.

3. Comment on why the C programming language provides a programmer the ability to create new
data types (struct) and what advantages does this have? Are there limitations in the construction
of a new data type —if so, what specifically?

Reflections will be graded based on the published rubric:
https://github.com/Seneca-144100/1PC-Project/tree/master/Reflection%20Rubric.pdf

Milestone — 2 Submission

1. Upload (file transfer) your all header and source files including your reflection:
commonHelpers.h commonHelpers.c account.h alms2.c reflect.txt
Login to matrix in an SSH terminal and change directory to where you placed your source code.
Manually compile and run your program to make sure everything works properly:
gcc -Wall alms2.c commonHelpers.c -o ms2 <ENTER>

If there are no error/warnings are generated, execute it: ms2 <ENTER>

4. Run the submission command below (replace profname.proflastname with your professors

Seneca userid and replace NAA with your section):
~profName.proflastname/submit 144alms2/NAA_ms2 <ENTER>

5. Follow the on-screen submission instructions.

SDDS School of Software Design and Data Science

https://github.com/Seneca-144100/IPC-Project/tree/master/Reflection%20Rubric.pdf

SDDS Fall - 2021 School of Software Design and Data Science

Milestone — 3 (Worth 10%, Target Due Date: November 8/9%)

In Milestone — 3, the “account” module will be refined and expanded on to include three (3) functions
which will handle user input for account related data. A new “accountTicketingUI” (user interface)
module will be introduced starting with four (4) functions that will be responsible for displaying
account records in a tabular format.

Special Instructions Regarding Header Files (.h)

User library header files (such as the "account.h" file) are commonly "included" in many other source
files within the same project. This often will cause build errors due to the duplication of the contents
injected by including header files. To prevent these compile-time errors, we need to "safeguard" the
header file. This is a technique used to instruct the compiler to use only one instance of the header
contents even when it is referenced more than once in the project by several other files. This is an
advanced topic not covered in this course and will be discussed in more depth in the next level course
C++ (O0P244/BTP200). However, to successfully build and compile your project, you will need to apply
this safeguarding technique to all the (.h) headers files. This will require three (3) extra lines of code to
be applied in each header file.

Example safeguard applied to the "account.h" header file:

//
// Your identification information commented header goes here...

//

#ifndef ACCOUNT_H_
#define ACCOUNT H_

Safeguard

// Header file contents goes here... X
Unique Name: ACCOUNT_H_

#endif // IACCOUNT_H_

Apply the same technique to all (.h) header files in your project (and any new ones you need to create
going forward). It is IMPORTANT that you use a unique name reflecting the module name (usually
derived from the filename) followed by "_H_". For example, to apply the safeguard to the
"commonHelpers.h" file, you would do the following:

//
// Your identification information commented header goes here...
//

#ifndef COMMON_HELPERS_H_
#define COMMON_HELPERS_H_

// Header file contents goes here...

#endif // !COMMON_HELPERS H_

SDDS School of Software Design and Data Science

SDDS

Fall - 2021 School of Software Design and Data Science

Specifications

1. Inthe “account.h” header file, you will need to modify the "Account" data type to include two (2)
additional members. You must provide the appropriate data type and meaningful identifiers/names for

each described member:
e A'"Person" type used to store related details of a person.
e A "Userlogin" type used to store related details of a user login.

2. Each function briefly described below will require a function prototype to be placed in the "account.h"
file, and the respective function definitions in the "account.c" source file.

Note:

» The source file "account.c" will need to be created and added to your project. It will also require
the appropriate library inclusions to be able to use the helper functions in the "commonHelpers.h"
file and be able to define the functions prototyped in the "account.h" file. Remember to include
your commented header that includes your identification information.

» When coding the function definitions, it is expected you will call functions from the common
helper library where appropriate.

e Function: getAccount

®)
®)

Receives a modifiable Account pointer argument.
Does not return anything but does return data for an Account type via the argument
pointer variable.

Functionality

o

©)
©)
©)

o

Displays a title: "Account Data: New Record" and is underlined using 40 dashes (-)
Prompts the user to enter the account number.

Prompts the user to enter the account type.

The entered values should be assigned using the pointer argument received by the
function.

See the sample output for the prompts to be used.

Hint: most of this logic and code should be coming from your work done in Milestone 2
found in the alms2.c main function

e Function: getPerson

@)
@)

Receives a modifiable Person pointer argument.
Does not return anything but does return data for a Person type via the argument
pointer variable.

Functionality

©)
©)

SDDS

Displays a title: "Person Data Input" and is underlined using 40 dashes (-)
Prompts the user to enter the person's full name.

School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

Prompts the user to enter the account holder's birth year.

Prompts the user to enter the household income.

Prompts the user to enter the country where account holder lives.

The entered values should be assigned using the pointer argument received by the
function.

See the sample output for the prompts to be used.

o Hint: most of this logic and code should be coming from your work in Milestone 2 found
in the alms2.c main function

0 O O O

O

e Function: getUserLogin
o Receives a modifiable UserLogin pointer argument.
o Does not return anything but does return data for a UserLogin type via the argument
pointer variable.

Functionality
o Displays a title: "User Login Data Input" and is underlined using 40 dashes (-)

o Prompts the user to enter the user login name.

o Prompts the user to enter the user login password.

o The entered values should be assigned using the pointer argument received by the

function.

See the sample output for the prompts to be used.

o Hint: most of this logic and code should be coming from your work in Milestone 2 found
in the alms2.c main function

o

3. Create a module called “accountTicketingUI”. To do this, you will need to create two files:

“accountTicketingUI.h” and “accountTicketingUI.c” and add them to the Visual Studio project.
e Reminder: You will need to apply a "safeguard" to the (.h) header file.

4. Each function briefly described below will require a function prototype to be placed in the
"accountTicketingUI.h" file, and the respective function definitions in the " accountTicketingUI.c"
source file.

e Function: displayAccountDetailHeader
o Receives no arguments.
o Does not return anything.

Functionality
o Displays a formatted table header (FYI: the related function that produces the data rows

under this header is: "displayAccountDetailRecord" described later)
o This function should only display to the screen eight (8) column headers with an
underline:

Acct# Acct.Type Full Name Birth Income Country Login Password

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

e Function: displayAccountDetailRecord
o Receives a unmodifiable Account pointer argument.
o Does not return anything.

Functionality
o Displays a formatted record that aligns to the respective header as defined in function

"displayAccountDetailHeader" described earlier)
o Use the following format specifiers in your printf statement for the respective fields:

Column Name Format Specifier
Acct# %05d
Acct.Type %-9s
Disp.Name %-15s
Birth %5d
Income %11.2If
Country %-10s
Login %-10s
Password %8s

o You will need to reference the respective members of the Account pointer argument
variable received by this function to provide your printf function with the required data.

NOTE
o The password must be partially "hidden" with asterisks (*) used for every-other
character displayed (DO NOT modify the stored password value).

5. Using the comments provided in the "alms3.c" source file, call the new functions you created in
this milestone where appropriate.

Note

e Only the insertion of the function calls is permitted.

e No other code should be modified or added to the "alms3.c" source code file.

e Some functions require an argument(s); you are limited to using the variable "account" already
declared for you in the main function — no other variables are to be declared.

6. Review each (.h) header file and supply brief but meaningful and concise comments to each
function prototype describing what the function does and additional usage information if required.
e When you are satisfied with your documentation, copy the comments to each function
definition in their respective (.c) source code files.

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

A1-MS3: Sample Output

Assignment 1 Milestone 3 - Tester

Account Data: New Record

Enter the account number:

ERROR: Value must be an integer: EfsJ<J2)!

Enter the account type (A=Agent | C=Customer):
ERROR: Character must be one of [AC]:

ERROR: Character must be one of [AC]:

ERROR: Character must be one of [AC]: [

Person Data Input

Enter the person's full name (30 chars max):

Enter birth year (current age must be between 18 and 110):

ERROR: Value must be between 1911 and 2003 inclusive: pkkl(%

ERROR: Value must be between 1911 and 2003 inclusive: pEL}

Enter the household Income: $iEENBEL IRl

ERROR: Value must be a double floating-point number:

ERROR: Value must be a positive double floating-point number: [N
ERROR: Value must be a positive double floating-point number: pki:pryiyls
Enter the country (3@ chars max.):

User Login Data Input

Enter user login (10 chars max): [[FEBEETIIRTERRET

ERROR: String length must be no more than 10 chars:
Enter the password (must be 8 chars in length): §
ERROR: String length must be exactly 8 chars:
ERROR: String length must be exactly 8 chars:
ERROR: String length must be exactly 8 chars:

Acct# Acct.Type Full Name Birth Income Country Login Password

50001 AGENT Will Smith 1988 188222.75 CANADA MIBAgent-J a*e*t*o*

Account, Person, and User Login test completed!

Milestone — 3 Submission

7. This is a test submission for verifying your work only — no files will be submitted to your

instructor — this will test your functions and confirm the outputs match to the expected output.
8. Upload (file transfer) your all header and source files:
o commonHelpers.h & commonHelpers.c
o account.h & account.c
o accountTicketingUI.h & accountTicketingUI.c
o alms3.c
9. Login to matrix in an SSH terminal and change directory to where you placed your source code.

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

10. Manually compile and run your program to make sure everything works properly:
gcc -Wall ailms3.c commonHelpers.c account.c accountTicketingUI.c -o ms3 <ENTER>

If there are no error/warnings are generated, execute it: ms3 <ENTER>

11. Run the submission command below (replace profname.proflastname with your professors

Seneca userid and replace NAA with your section):
~profName.proflastname/submit 144ailms3/NAA_ms3 <ENTER>

12. Follow the on-screen submission instructions.

Milestone — 4 (Worth 20%, Due Date: November 12)

This module will conclude Assignment 1! In Milestone-4, you will be adding more functionality to the
"account" module that will support the updating of data whereby the user can select a specific field
member to change for each of the user-defined data types (Account, Person, UserLogin).

You will expand the "accountTicketingUI" module to include a menu-driven model for navigating the
application features. The application will provide an "agent" user-type menu for managing account
records.

Review the sample output section to get a feel for how the application will flow and what menu
options are available.

IMPORTANT
e |tis expected you will minimize code redundancy as much as possible by calling appropriate
ready-to-use functions that you have already coded (including those coded for this milestone if

applicable)

Note: The application will continue to be enhanced and expanded on in Assignment 2.

Specifications

1. The "alms4.c" source file should not be modified. Examine the "alms4.c" file.
e You will notice the main function does not do much. It assigns data to an accounts array and
then calls a function "applicationStartup" providing it with the array of accounts.
e The main function is the entry point to the application, but you will now create an entry point
to the application logic which will be the "applicationStartup" function to be coded in the
acountTicketingUl module.

2. Each function briefly described below will require a function prototype to be placed in the
"accountTicketingUI.h" file, and the respective function definitions in the " accountTicketingUI.c"
source file.

SDDS School of Software Design and Data Science

SDDS

Fall - 2021 School of Software Design and Data Science

Function: applicationStartup

@)
@)

©)

Receives as an argument in parameter 1, a modifiable array of type Account.

Receives as an argument in parameter 2, an integer specifying the maximum number of
elements in the first argument's array.

Does not return anything.

Functionality

©)
@)

The purpose of this function is to be the entry point to the application logic.

This function will be responsible for a main loop that will call a menulLogin function (see
next function description for details) until the user specifies the intention to exit the
system.

The menulogin function will return the index number of the account array for the user
that is logged in (or -1 if the user wishes to exit the application).

Using the returned index number, you should check the logged in user account type.

If the logged in user is an "agent" account type, load the agent main menu by calling the
function "menuAgent" (described later)

Only an agent type account should be permitted to login; any other login attempt
should display:

"ERROR: login failed!"

When the user wishes to exit the application, the main loop should end and then display
the exit message (see example output section for message)

SDDS

Function: menulLogin

@)
©)

Receives as an argument in parameter 1, an unmodifiable array of type Account.
Receives as an argument in parameter 2, an integer specifying the maximum number of
elements in the first argument's array.

Returns an integer representing the array index of the Account that matches the
entered account number or -1 if the user wishes to exit.

Functionality

o

@)
@)

Displays a login menu:

1) Login to the system
0) Exit application

Selection:

The user must select an option number (1 or 0).
Selecting "1" (to login to the system), should prompt the user for an integer account
number. The accounts array should be searched for a match on the entered account
number.
= |f a match is found, the array index position should be returned to the caller of
this function.
= |f no match is found, an error message should be displayed:

School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

"ERROR: login failed!"

= NOTE: The single-entry, single-exit principle must be honoured and therefore a
function can have only ONE return statement near the end of the function.

o This process will repeat until either the user selects 0 signifying the user wishes to exit
the application, or the entered account number matched to an account in the account
array.

o When the user enters 0 to exit the application, you must get user confirmation.

e Function: menuAgent
o Receives as an argument in parameter 1, a modifiable array of type Account.
o Receives as an argument in parameter 2, an integer specifying the maximum number of
elements in the first argument's array.
o Receives as an argument in parameter 3, an unmodifiable pointer to type Account. This
argument represents the logged-in agent's account details.
o Does not return anything.

Functionality
o Display's the agent's main menu options until the user wishes to logout.

o Display's the logged in agent's "full name" and "account number" (in parenthesis)
o Followed by the main menu options:

1) Add a new account

2) Modify an existing account
3) Remove an account

4) List accounts: detailed view

Selection:

o This is the main menu for an agent who has authorization to manage the accounts for
the system.
o Option 1: New accounts can be added to the array.
= Your logic should include finding an available index in the accounts array where a
new Account record can be added (the account number at that index should be
zero (0) which indicates an empty record).
= |f there are no remaining elements available for a new record (all account
numbers have values > 0), then an error message should be displayed:
ERROR: Account listing is FULL, call ITS Support!

= Your logic should at some point be calling the function "getAccount"
o Option 2: Modification to existing accounts.
= Your logic should prompt the user for an account number and if not found in the
array of accounts, display an error (see sample output for appropriate message)

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

= |f the account is found, then at some point you must call the "updateAccount"
function.
o Option 3: Removal of an account.
= Like option 2 above, you must prompt for an account number used to lookup the
specific account record and display an appropriate error message if not found.
= |f the account number entered is the same as the logged-in user's account, you
must deny the removal (see sample output for appropriate message)
= |f the account is found and is different from the logged-in user's account, then
you must obtain confirmation for the removal (see sample output for prompt
message where only an uppercase "Y" or "N" is permitted)
- If the user confirms the removal, you must set the account number
member to a zero (0) value — no other members should be modified.
- Based on the confirmation of removal response, display the appropriate
message (see sample output for possible messages)
o Option 4: Displays a tabular view of all the accounts in a "detailed" format.
= Your code should at some point call the function
"displayAllAccountDetailRecords"
o Option —0: Should exit the menu function (essentially logging out of the system) and
return to the login menu (Note: You should NOT be calling the menulLogin function to
achieve this).

e Function: findAccountindexByAcctNum

o Receives an argument in parameter 1, an integer value representing the account
number to find a match on in the account array (parameter 2)

o Receives as an argument in parameter 2, an unmodifiable array of type Account.

o Receives as an argument in parameter 3, an integer specifying the maximum number of
elements in the second argument's array.

o Receives as an argument in parameter 4, an integer type representing a zero or non-
zero value (indicates if this function should prompt the user for the account number)

o Returns an integer representing the array index of the Account that matches the desired
account number or -1 if the record was not found.

Functionality

o This function's purpose is to search the array received in argument 2 for a match on a

desired account number.
HINT: This function can be used in many places in your application

o If the 4" argument is a zero (0) value, then the 1%t argument account number value
should be used in the search routine, otherwise, the function will need to first prompt
the user for the invoice number to search on (and will NOT use the 1%t argument value).

o If prompting is required (4" argument will be a non-zero value), use the following
prompt message:
Enter the account#:

= Use the entered account number value in the search routine.
o The function should return either -1 (no record match found) or the index position
where the matched record was found within the argument 2 array.

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

e Function: displayAllAccountDetailRecords
o Receives as an argument in parameter 1, an unmodifiable array of type Account.
o Receives as an argument in parameter 2, an integer specifying the maximum number of
elements in the first argument's array.
o Does not return anything.

Functionality
o This function displays a detailed view of all the valid account records (where the
account number is greater than zero (0)).
o The appropriate tabular header should be displayed (call the appropriate function)
o The corresponding record detail should be displayed (call the appropriate function) as
many times as required to show all the valid records.

e Function: pauseExecution (Provided for you — see below)
o This function is provided for you (the logic and a sample of this is already made available
to you in the course notes)
o Often, we want to be able to "pause" the application and await the user's confirmation
to continue by pressing the "enter" key. Be sure to call this function where appropriate
(see sample output for where this needs to be implemented)

Function Prototype
// Pause execution until user enters the enter key
void pauseExecution(void)

Function Definition
// Pause execution until user enters the enter key
void pauseExecution(void)

{
printf("<< ENTER key to Continue... >>");
clearStandardInputBuffer();
putchar('\n");

}

Account Module
3. The existing function "getAccount" will require some enhancements to the logic and will only affect the
source definition file ("account.c").

e Function: getAccount
o Modify the logic for this function so that it will prompt the user for the User Login
information ONLY IF the new account is an "Agent" type
o If the new account is not and "Agent" type, DO NOT prompt the user for the User Login
information (only agents may login to the system). In such cases, set the User Login
member variable to a safe empty state

4. Each function briefly described below will require a new function prototype to be placed in the
"account.h" file, and the respective function definitions in the "account.c" source file.

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

e Function: updateAccount
o Receives a modifiable Account pointer argument.
o Does not return anything but does return data for an Account type via the argument
pointer variable.

Functionality
o Display's the update menu options for the account until the user wishes to exit.

o Display's a menu header title that includes the account number being modified (with 40
dashed characters on the next line). Example:
Update Account: 00001 (2)
= The highlighted green 2 should be replaced with the full name associated to the
desired account
o Followed by a menu with options to modifying specific members of an Account:
1) Update account type (current value: R2)
2) Person
3) Login
@) Done
Selection:
= The highlighted green 2 should be replaced with the account type member
(single character C or A) associated to the desired account
= Note: The account number member is not modifiable and therefore is not an
option in this menu

o Option —1: Prompt the user for the modified value and assign the entered value to the
account accordingly (see sample output for prompt message and valid values)
Note:
= |f the modified account type is being set to an "Agent" type, the user must
immediately be prompted to enter the User Login information lead by the
message:
Agent type accounts require a user login. Please enter this information now:
= QOtherwise, if being changed to a "Customer" type, set the User Login
information to a safe empty state since this information is not required.
o Option —2: Should call at some point the function "updatePerson"
o Option —3:
= This option should display an error message if the account is a "Customer" type
since non-Agent accounts will not have login information (and return to the
menu):
ERROR: Customer account types don't have user logins!
= Otherwise, at some point call the function "updateUserLogin"
o Option — 0: Should exit the function and return to the caller (the agent menu; Note: You
should NOT be calling the menuAgent function to achieve this)

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

e Function: updatePerson
o Receives a modifiable Person pointer argument.
o Does not return anything but does return data for a Person type via the argument
pointer variable.

Functionality
o Display's a menu header title followed by 40 dashed characters on the next line,

followed by a menu with options to modifying specific members of a Person:
Person Update Options

1) Full name (current value: ?2)
2) Household Income (current value: $2)
3) Country (current value: ?2)
@) Done
Selection:
= The highlighted green 2 should be replaced with the current value for the
respective members
= Note: The account holders birth year member is not modifiable and therefore is
not an option in this menu
o Option —1: Prompt the user for the modified value and assign the entered value to the
appropriate Person member accordingly (see sample output for prompt message)
o Option —2: Prompt the user for the modified value and assign the entered value to the
appropriate Person member accordingly (see sample output for prompt message)
o Option —3: Prompt the user for the modified value and assign the entered value to the
appropriate Person member accordingly (see sample output for prompt
o Option —0: Should exit the function and return to the caller (the update account menu;
Note: You should NOT be calling the updateAccount function to achieve this).

e Function: updateUserLogin
o Receives a modifiable UserLogin pointer argument.
o Does not return anything but does return data for an UserLogin type via the argument
pointer variable.
Functionality
o Display's the update menu options for the user login until the user wishes to exit.
o Display's a menu header title that includes the login name being modified (with 40

dashed characters on the next line). Example:
User Login: 2 - Update Options

= The highlighted green 2 should be replaced with the Login Name associated to
the desired account's user login.
o Followed by a menu with options to modifying specific members of a UserLogin:
1) Password
@) Done
Selection:
= Note: The login name member is not modifiable and therefore is not an option in
this menu

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

o Option —1: Prompt the user for the modified value and assign the entered value to the
appropriate UserLogin member accordingly (see sample output for prompt message)

o Option —0: Should exit the function and return to the caller (the update account menu;
Note: You should NOT be calling the updateAccount function to achieve this).

A1-MS4: Sample Output

1) Login to the system
0) Exit application

Selection: E

ERROR: Value must be between @ and 1 inclusive: Ei
ERROR: Value must be between @ and 1 inclusive:
ERROR: Value must be an integer: [

Are you sure you want to exit? ([Y]es|[N]o): EE
ERROR: Character must be one of [yYnN]: m

1) Login to the system
9) Exit application

Selection: M

Enter your account#: pPELL
ERROR: Login failed!

<< ENTER key to Continue... >> [y

1) Login to the system
9) Exit application

Selection: M

Enter your account#: <2kl
ERROR: Login failed!

<< ENTER key to Continue... >> [y

SDDS School of Software Design and Data Science

SDDS Fall — 2021

1) Login to the system
0) Exit application

Selection: ﬂ
Enter your account#: E<<

AGENT: Will Smith (50008)

1) Add a new account

2) Modify an existing account
3) Remove an account

4) List accounts: detailed view

Selection: fl

Account Data: New Record

Enter the account number: Ekkkkl

Enter the account type (A=Agent | C=Customer):

ERROR: Character must be one of [AC]: g
ERROR: Character must be one of [AC]: [d
ERROR: Character must be one of [AC]: [d

Person Data Input

Enter the person's full name (30 chars max): WERERLLY
Enter birth year (current age must be between 18 and 110): pz[Ll

ERROR: Value must be between 1911 and 2003 inclusive:
ERROR: Value must be between 1911 and 2003 inclusive:

Enter the household Income: $HCL

1910
2003

School of Software Design and Data Science

ERROR: Value must be a positive double floating-point number: p¥EE]

Enter the country (30 chars max.): [@{U¥:\\]y
*** New account added! ***
<< ENTER key to Continue... >> [y

AGENT: Will Smith (50008)

1) Add a new account

2) Modify an existing account
3) Remove an account

4) List accounts: detailed view

Selection: M
Account Data: New Record

SDDS

School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

Enter the account number: EPF¥E)
Enter the account type (A=Agent | C=Customer): E

Person Data Input

Enter the person's full name (30 chars max): LELFEREYLGE®
Enter birth year (current age must be between 18 and 110): p{:J2kl

Enter the household Income: $ii:NbEN:L
Enter the country (30 chars max.): HII¥:\\]y

User Login Data Input

Enter user login (10 chars max): EEEiaPE
Enter the password (must be 8 chars in length):

*** New account added! ***
<< ENTER key to Continue... >> |4l

AGENT: Will Smith (50008)

1) Add a new account

2) Modify an existing account
3) Remove an account

4) List accounts: detailed view

Selection: E

Acct# Acct.Type Full Name Birth Income Country Login Password
50001 CUSTOMER Silly Sally 1990 150000.10 CANADA

50028 AGENT Fred Flintstone 1972 2250400.22 AFRICA Bedrock-10 y*b*d*b*
50004 CUSTOMER Betty Boop 1978 250800.74 INDIA

50008 AGENT Will Smith 1952 2350600.82 U.S.A. MIBAgent-J t*e*o*s*
50020 CUSTOMER Shrimpy Shrimp 2000 350500.35 KOREA

91111 CUSTOMER Tesla Tommy 2003 1.99 FINLAND

92222 AGENT Tania Ticket 2001 88123.45 IRELAND agentl23 d*a*o*d*

<< ENTER key to Continue... >> |4y

AGENT: Will Smith (50008)

1) Add a new account

2) Modify an existing account
3) Remove an account

4) List accounts: detailed view

Selection: B

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

Enter the account#: Ehkkkl

Update Account: 91111 (Tesla Tommy)

1) Update account type (current value: C)
2) Person

3) Login

@) Done

Selection: E

ERROR: Customer account types don't have user logins!

Update Account: 91111 (Tesla Tommy)

1) Update account type (current value: C)
2) Person

3) Login

@) Done

Selection: fl

Enter the account type (A=Agent | C=Customer): [}
Agent type accounts require a user login. Please enter this information now:

User Login Data Input

Enter user login (10 chars max): [il RRETIEEN:To]l¢

ERROR: String length must be no more than 10 chars: [Wligs:1o]sls!
Enter the password (must be 8 chars in length): [[MEIJ
Update Account: 91111 (Tesla Tommy)

1) Update account type (current value: A)

2) Person

3) Login

@) Done

Selection: E

Person Update Options

1) Full name (current value: Tesla Tommy)
2) Household Income (current value: $1.99)
3) Country (current value: FINLAND)

0) Done

Selection: M

Enter the person's full name (30 chars max):

Person Update Options

1) Full name (current value: James Bond)
2) Household Income (current value: $1.99)
3) Country (current value: FINLAND)

0) Done

Selection: P

Enter the household Income: $pAWEVL WA

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

Person Update Options

1) Full name (current value: James Bond)

2) Household Income (current value: $2123456.75)
3) Country (current value: FINLAND)

0) Done

Selection: E

Enter the country (30 chars max.): [S\[¥:\\]y

Person Update Options

1) Full name (current value: James Bond)

2) Household Income (current value: $2123456.75)
3) Country (current value: ENGLAND)

@) Done

Selection: @

Update Account: 91111 (James Bond)

1) Update account type (current value: A)
2) Person

3) Login

@) Done

Selection: F

User Login: Agent-Bond - Update Options
1) Password

0) Done

Selection: M

Enter the password (must be 8 chars in length):

User Login: Agent-Bond - Update Options
1) Password

0) Done

Selection: [

Update Account: 91111 (James Bond)

1) Update account type (current value: A)

2) Person

3) Login

@) Done

Selection: E

ERROR: Value must be between @ and 3 inclusive: @

AGENT: Will Smith (50008)

1) Add a new account

2) Modify an existing account
3) Remove an account

4) List accounts: detailed view

SDDS School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

@) Logout

Selection: E

Acct# Acct.Type Full Name Birth Income Country Login Password
50001 CUSTOMER Silly Sally 1990 150000.10 CANADA
50028 AGENT Fred Flintstone 1972 2250400.22 AFRICA Bedrock-10 y*b*d*b*
50004 CUSTOMER Betty Boop 1978 250800.74 INDIA
50008 AGENT Will Smith 1952 2350600.82 U.S.A. MIBAgent-J t*e*o*s*
50020 CUSTOMER Shrimpy Shrimp 2000 350500.35 KOREA
91111 AGENT James Bond 2003 2123456.75 ENGLAND Agent-Bond s*y*a*e*
92222 AGENT Tania Ticket 2001 88123.45 IRELAND agentl23 d*a*o*d*

<< ENTER key to Continue... >> [{dudJ

AGENT: Will Smith (50008)

1) Add a new account

2) Modify an existing account
3) Remove an account

4) List accounts: detailed view

Selection: E
Enter the account#: Ep¥¥yi

Update Account: 92222 (Tania Ticket)

1) Update account type (current value: A)
2) Person

3) Login

@) Done

Selection: fl

Enter the account type (A=Agent | C=Customer): E

Update Account: 92222 (Tania Ticket)

1) Update account type (current value: C)
2) Person

3) Login

@) Done

Selection: [

AGENT: Will Smith (50008)

1) Add a new account

2) Modify an existing account
3) Remove an account

4) List accounts: detailed view

SDDS School of Software Design and Data Science

Fall — 2021

@) Logout

Selection: E

Acct# Acct.Type Full Name Birth Income

50001 CUSTOMER Silly Sally 1990 150000.
50028 AGENT Fred Flintstone 1972 2250400.
50004 CUSTOMER Betty Boop 1978 250800.
50008 AGENT Will Smith 1952 2350600.
50020 CUSTOMER Shrimpy Shrimp 2000 350500.
91111 AGENT James Bond 2003 2123456.
92222 CUSTOMER Tania Ticket 2001 88123.

<< ENTER key to

S ENTER]

Continue...

AGENT: Will Smith (50008)

Add a new account

Modify an existing account
Remove an account

List accounts: detailed view

Selection: E
Enter the account#: EJ&liel

ERROR: You can't remove your own account!

P ENTER]

<< ENTER key to Continue...

AGENT: Will Smith (50008)

Add a new account

Modify an existing account
Remove an account

List accounts: detailed view

Selection: B

Enter the account#: Bzl

Acct# Acct.Type Full Name Birth Income

150000.10 CANADA

50001 CUSTOMER Silly Sally 1990

Are you sure you want to remove this record? ([Y]es|[N]o): ﬂ

¥** Account Removed! ***

SDDS

Country
CANADA
AFRICA
INDIA
U.S.A.
KOREA
ENGLAND
IRELAND

Country

School of Software Design and Data Science

Bedrock-10 y*b*d*b*
MIBAgent-J t*e*o*s*

Agent-Bond s*y*a*e*

Password

Login

School of Software Design and Data Science

SDDS Fall — 2021

S W[ENTER]

<< ENTER key to Continue...

AGENT: Will Smith (50008)

1) Add a new account

2) Modify an existing account
3) Remove an account

4) List accounts: detailed view

Selection: E

Acct# Acct.Type Full Name Birth Income Country

50028 AGENT Fred Flintstone 1972 2250400.22 AFRICA

50004 CUSTOMER Betty Boop 1978 250800.74 INDIA
50008 AGENT Will Smith 1952 2350600.82 U.S.A.
50020 CUSTOMER Shrimpy Shrimp 2000 350500.35 KOREA
91111 AGENT James Bond 2003 2123456.75 ENGLAND
92222 CUSTOMER Tania Ticket 2001 88123.45 IRELAND

[ENTER]

<< ENTER key to Continue...

AGENT: Will Smith (50008)

1) Add a new account

2) Modify an existing account
3) Remove an account

4) List accounts: detailed view

Selection: @

LOGGED OUT #i#

1) Login to the system
0) Exit application

Selection: [
Are you sure you want to exit? ([Y]es|[N]o): ﬂ

SDDS

School of Software Design and Data Science

Bedrock-10 y*b*d*b*
MIBAgent-J t*e*o*s*

Agent-Bond s*y*a*e*

School of Software Design and Data Science

SDDS Fall - 2021 School of Software Design and Data Science

Reflection (Worth 20%, Due Date: November 12th)

Academic Integrity

It is a violation of academic policy to copy content from the course notes or any other published
source (including websites, work from another student, or sharing your work with others).

Failure to adhere to this policy will result in the filing of a violation report to the Academic Integrity
Committee.

Instructions

e Create a text file named “reflect.txt” and record your answers to the below questions in this file.

e Answer each question in sentence/paragraph form unless otherwise instructed.

e A minimum 300 overall word count is required (does NOT include the question).

e Whenever possible, be sure to substantiate your answers with a brief example to demonstrate your
view(s).

1. As painful and frustrating as it may be to match the expected output exactly, explain why you think
you must be put through this challenge and expected to meet this minimum expectation.

2. What factors must you consider when naming a module or library? Why do you think it is a
suggested best practice to identify a module/library header and source code files using the same
name? Give an example to support your argument.

3. This application applies a cascading menu system framework. What does this mean and explain it
using elements from this application to support your understanding of this logical concept?

Reflections will be graded based on the published rubric:
https://github.com/Seneca-144100/IPC-Project/tree/master/Reflection%20Rubric.pdf

Milestone — 4 Submission

1. Upload (file transfer) your all header and source files including your reflection:
o commonHelpers.h & commonHelpers.c
o account.h & account.c
o accountTicketingUI.h & accountTicketing.c
o alms4.c
o reflect.txt
Login to matrix in an SSH terminal and change directory to where you placed your source code.
Manually compile and run your program to make sure everything works properly:
gcc -Wall ailms4.c commonHelpers.c account.c accountTicketingUI.c -o ms4 <ENTER>

If there are no error/warnings are generated, execute it: ms4 <ENTER>

4. Run the submission command below (replace profname.proflastname with your professors

Seneca userid and replace NAA with your section):
~profName.proflastname/submit 144aims4/NAA_ms4 <ENTER>

5. Follow the on-screen submission instructions.

SDDS School of Software Design and Data Science

https://github.com/Seneca-144100/IPC-Project/tree/master/Reflection%20Rubric.pdf

