You are to implement a two-pass linker in C, C++, or Java and submit the source code on eClasses, which we compile and run on the EECS red server.
Thiz assignment is aospted from the lob designed By Prof Allan Gotlish
Linker

As we discussed in the last lecture, for exscuting a computer program code it needs to be compiled {by a Compiler) into assembly. The assembler processes the code to produce machine instructions into the object module. The object module cannot be run because the compiler and assembler produce each module as if it will be loaded at location zero. These modules need to be linked together to produce consist
memary map. This what the linker does. Linker i= 3 utility program that implements to tasks: 1) relocating relative addresses and 2) resolving external references.

Relocating Relative Addresses

Remamber sach moduls is produced st

iz used to indicate 2 jump to locstion 120 of the current module. To convert this relative address to an absolute address, the linker adds the base address of the module to the relative address. The base address is the address st which this module will be loaded.

ting from zaro. For sxample, a machine instruction reprasenting:

For example, assume 3 module is to be loaded starting at location 2300 and contains the above instruction
TP
The linker changes thiz instruction to

How does the linksr know that the module is to be loaded starting at location 23007

Linkar proceszes the modules one at a time: We azzume that the first maduls is to be loaded at location zero. 5o relocating the first moduls is trivial (dding z2r0). We =3y that the relocation constant is zero

After processing the first moduls, the linker knows its length (say that length is L1).

Hencs the second moduls is to be loaded starting 2t L1, is., the relocation constantiz L1,

In genaral, the linker keeps the sum of the lengths of all the modules it has zlready processed: this sum iz the relocstion constant for the next module.

Resolving External References

If a module contains a function call #(

) toafunction #() that is defined in a different moduls, the objsct module contzining the call must cantain some Kind of jump to the beginning of #()

But this is impossible! When the program is compiled, the compiler and assembler do not see the definition of () so there is no way they can supply the starting address.
Instead 3 dummy address is supplied and 3 notation made that this address needs to be filled in with the location of +()This is called a use of f(

The object module containing the definition of () contasins a notation that +() is being defined and gives the relative address of the definition. which the linker converts to an absolute address (as above).

The linker then changes 3l uses of () to the comect absolute address.

Assignment 2: Two Pass Linker

For your assignment you will simulste 3 two pass linksr. The target machine is word addressable and has s memory of 300 words, each consisting of 4 decimal digits. The first {leftmast] digit is the opcode, which is unchanged by the linker. The remsining thres digits {called the sddress field) form sither

An immediats operand, which is unchangsd.

An absolute address, which is unchanged.

A relative address, which is relocated.

An external address, which is resolved.
1/Q specification

There are several sample input sets attached below. The first is shown below and the second is an re-formatted version of the first. If you use the java Scanner or C's scanf{) (which | recommend you do), inputs 1 and 2 will look the same to your program. Some of the input sets contain errors that you are to detect as described below. We will run your assignments on these (and other) input sets.

The input consists of 3 series of object modulss, sach of which cantsins three parts: definition list, use list, and program: text. Praceding all the object modulss i 3 single integer giving the number of modulss presant

The linker processes the input twice (that is why it is called two-pass). Pass one determines the base address for each module and the absolute address for each external symbol, storing the |ater in the symbol table it produces. The first module has base address zero; the base address for module | + 1 is equal to the base address of module / plus the length of module I The absolute address for a symbol § defined in
maodule M is the base address of M plus the relative address of § within M. Pass two uses the base addresses and the symbol table computed in pass one to generate the actual output by relocating relative addresses and resolving external references.

The definition list is 3 count ND (Number of Definitions) followsd by ND pairs (5.R) where S is the symbol being defined and R is the relztive address to which the symbal refers. Pass one relecates R forming the absolute address A and stores the pair (5.4] in the symbol table.
The use list is 3 count NU (Number of Uses) followed by NU pairs (5.F). where 5 is an external symbol used in the module and f iz 3 relative address where 5 is used. The [dummy) address initially in R is 3 pointer to the next use of 5. This linked list of uses ends with a pointer of 777.
The program text consists of 3 count NT [Number of Text entrizs) followed by MT pairs (type, word), where word is 3 4-digit instruction as described above and fype is a single character indicating if the address in word is Immediate, Absolute, Relative, or Extzmal. NT is also the length of the module.

The actions taken by the linker depend on the type of the address. Consider the following input

The program text consists of a count NT (Number of Text entries) followed by NT pairs (fype. word). where word is 3 4-digit instruction as described above and fype is 3 single character indicating if the address in word is Immediate. Absolute. Relative. or External. NT is also the length of the module.
The actions taken by the linker depend on the type of the address. Consider the following input:

xy 2
xydz2

R 1004 1 5678 E 2777 R 8002 E 7777

3
BOO1 E 1777 E 1001 E 3002 R 1002 A 1010

e L LT)
=w

BO00 E 1777 E 2001

In the first pass, the linker simply finds the base address of each module and produces the symbol table giving the values for xy and z (2 and 15 respectively). The second pass does the real work using the symbol table and base addresses produced in pass one.
The resulting output (shown below] i more datailed than | expect you to produce (for an example, ses the attached autputs). The detsil is there to help me explain what the linker is doing.

The following is output annotated for darity and class discussion. Your output is not expected to be this fancy.

Symbol Table

Wemcry Map

+0

0: R 1004 1004+0 = 1004
1z 1 5678 B6TE
2: xy: E 2777 -5z 2016
3 R 8002 BOO2+0 = BOO2
i E TTTT ->xy Tooz
+5

[] R 8001 BOOL+6 = BOOG
1 E1TTT -2z 1016
2 E 1001 ->z 1016
a E 3002 ->z 3016
4 R 1002 1002+6 = 1007
L] A 1010 1010
*11

[] R 5001 5001+11= 5012
1 E 4777 ->2 40156
+13

o A 8000 BOCO
1 E 777 =>xy 1002
2 E 2001 ->xy 002

Other requirements: Error detection, arbitrary limits, et al.

Your program must check the input for the ermars listed below. All ermor messages produced must be informative, e.g., “Error: X21 was used but not defined. It has been given the valus 1117,

I 5 symbol is mutiply defined, print an error message and use the valus givan in the last definition.

I 5 symbol is used but not defined, print an smror message and use the valus 111,

If 2 symbol is defined but not used, print a warning message.

I an absolute address exceeds the sizs of the maching, print 2n error message and use the largest legal value.

If multiple symbols are listed 25 used in the same instruction, print an emar message and ignore all but the last usags given.
I 2 type R address in the list of Text entries excesds the size of the maduls, treat the address as 0 (and relocate it since it is of type R

You may need to set “arbitrary limits”, for example you may wish to limit the number of characters in 3 symbol to (say) 8. Any such limits should be clearly documented in the program and if the input fails to meet your limits. your program must print an error message. Naturally, any such limits must be large enough for all the attached inputs. Under no circumstances should your program reference an aray out of bounds,
etc.

What to submit

¥ou need to submit the following a zip file (named: firstname_lasiname_yorkid.zip) that includ

following required compon

source files tha required to run your comgile and run your programy)
<input_filext>

em.outin Java). NOTE:

output to the screen (printf(} in C;

T formats (s
output files.

infion of what is implemented (ne more than 4 lines)

wizdgezble about the two-pass Iinker 2lgorithms can understand the basic cperation of your program.

You must includs encugh high-level comments in 2l files of your program so thata re

Your code should be properly formatia

s instructions on compiling and running th ignmint on the EEC

ices an overdl| brisf o

You must inclu README txt file describing cription of what program does

If you're using C or C++ to implement the assignment, you must include 2 Makefile which will be used to compile and run your program

Mote: TAs are instructed to deduct points for programs that don't follow the above guidelines and require special adjustment to test (e.g., due to non-trivial compilation and execution, non-conforming to 10 formats, etc).

