
CMSC 430 Project 3

The third project involves modifying the attached interpreter so that it interprets programs for the

complete language.

You may convert all values to double values, although you can maintain their individual types if

you wish.

When the program is run on the command line, the parameters to the function should be supplied

as command line arguments. For example, for the following function header of a program in the

file text.txt:

function main a: integer, b: integer returns integer;

One would execute the program as follows:

$./compile < test.txt 2 4

In this case, the parameter a would be initialized to 2 and the parameter b to 4.

An example of a program execution is shown below:

$./compile < test.txt 2 4

 1 function main a: integer, b: integer returns integer;

 2 c: integer is

 3 if a > b then

 4 a rem b;

 5 else

 6 a ** 2;

 7 endif;

 8 begin

 9 case a is

 10 when 1 => c;

 11 when 2 => (a + b / 2 - 4) * 3;

 12 others => 4;

 13 endcase;

 14 end;

Compiled Successfully

Result = 0

After the compilation listing is output, the value of the expression which comprises the body of

the function should be displayed as shown above.

The existing code evaluates some of the arithmetic, relational and logical operators together with

the reduction statement and integer literals only. You are to add the necessary code to include all

of the following:

 Real and Boolean literals

 All additional arithmetic operators

 All additional relational and logical operators

 Both if and case statements

 Functions with multiple variables

 Functions with parameters

This project requires modification to the bison input file, so that it defines the additional the

necessary computations for the above added features. You will need to add functions to the

library of evaluation functions already provided in values.cc. You must also make some

modifications to the functions already provided.

You are to submit two files.

1. The first is a .zip file that contains all the source code for the project. The .zip file

should contain the flex input file, which should be a .l file, the bison file, which should

be a .y file, all .cc and .h files and a makefile that builds the project.

2. The second is a Word document (PDF or RTF is also acceptable) that contains the

documentation for the project, which should include the following:

a. A discussion of how you approached the project

b. A test plan that includes test cases that you have created indicating what aspects

of the program each one is testing and a screen shot of your compiler run on that

test case

c. A discussion of lessons learned from the project and any improvements that could

be made

Grading Rubric

Criteria Meets Does Not Meet

Functionality

70 points 0 points

Functions with real and Boolean literals
evaluated correctly (5)

Functions with real and Boolean literals
not evaluated correctly (0)

Subtraction and division operators
evaluated correctly (5)

Subtraction and division operators not
evaluated correctly (0)

Remainder operator evaluated
correctly (5)

Remainder operator not evaluated
correctly (0)

Exponentiation operator evaluated
correctly (5)

Exponentiation operator not evaluated
correctly (0)

Additional relational operators
evaluated correctly (5)

Additional relational operators not
evaluated correctly (0)

Additional logical operators evaluated
correctly (5)

Additional logical operators not
evaluated correctly (0)

if conditional expressions evaluated
correctly (10)

if conditional expressions not
evaluated correctly (0)

case conditional expressions evaluated
correctly (10)

case conditional expressions not
evaluated correctly (0)

Functions with multiple variables
evaluated correctly (10)

Functions with multiple variables not
evaluated correctly (0)

Functions with parameters evaluated
correctly (10)

Functions with parameters not
evaluated correctly (0)

Test Cases

15 points 0 points

Includes test cases that test real and
Boolean literals (3)

Does not Include test cases that test
real and Boolean literals (3)

Includes test cases that test all
arithmetic operators (3)

Does not include test cases that test all
arithmetic operators (0)

Includes test cases that test all
relational and logical operators (3)

Does not include test cases that test all
relational and logical operators (0)

Includes test cases that test both
conditional expressions (3)

Does not include test cases that test
both conditional expressions (0)

Includes test cases with variables and
parameters (3)

Does not include test cases with
variables and parameters (0)

Documentation

15 points 0 points

Discussion of approach included (5) Discussion of approach not included (0)

Lessons learned included (5) Lessons learned not included (0)

Comment blocks with student name,
project, date and code description
included in each file (5)

Comment blocks with student name,
project, date and code description not
included in each file (0)

