
CSCI 1520 Computer Principles 
and C++ Programming

Tutorial 7

Jingsong Chen
SHB 913

jschen@cse.cuhk.edu.hk

1

mailto:ymjin@cse.cuhk.edu.hk


Outline

• Assignment 4: Dots and Triangles

2



Requirement
• Assignment 4: Dots and Triangles
• Deadline: 20:00, Wed 1 Apr 2020
• Requirements:

• Filename: dotstriangles.cpp;
• Insert your name, student ID, and e-mail address as comments at the beginning of 

your source file;
• The output must exactly match the sample output;
• Include suitable comments as documentation;
• Free of compilation errors and warnings;
• No global variables (variables declared outside any functions);
• No functions in the <cmath> library;
• No arrays.

3



Game Description 
• Start condition:

• An empty triangular grid of dots and two players.

• Game stage:
• Two players take turns adding one line between two un-joined adjacent dots

(Player 1 takes the first turn).
• A player who completes the third side of a triangle owns that triangle, earns 

one point, and takes an extra turn. A player will not get a third consecutive turn 
even if (s)he makes triangle(s) in the extra turn. 

• End condition: 
• The grid is full, and the player with more points wins. It is a draw if two players 

have the same points. 

4



Grid Representation
• There are 12 possible line positions and 6 possible triangles in a 

triangular grid. We use a 18-digit integer 𝑑"𝑑#𝑑$𝑑%𝑑&𝑑'𝑑(𝑑)𝑑*
𝑑"+𝑑""𝑑"#𝑑"$𝑑"%𝑑"&𝑑"'𝑑"(𝑑") (do not use array) to encode all these
things.

• Each digit 𝑑, (1 ≤ 𝑖 ≤ 12) is either 0 or 1, denoting whether the corresponding 
positions 1 to 12 are empty or filled with a line. 

5

• Symbol o denotes a dot;
• Symbols ---, /, and \ denote the lines in three 

directions;
• Numbers 1 and 2 inside a completed triangle 

denote the player who owns it.

𝑑"𝑑#𝑑$ …𝑑"# = 110001011101



Grid Representation
• There are 12 possible line positions and 6 possible triangles in a 

triangular grid. We use a 18-digit integer 𝑑"𝑑#𝑑$𝑑%𝑑&𝑑'𝑑(𝑑)𝑑*
𝑑"+𝑑""𝑑"#𝑑"$𝑑"%𝑑"&𝑑"'𝑑"(𝑑") (do not use array) to encode all these
things.

• Each digit 𝑑, (13 ≤ 𝑖 ≤ 18) is 0 or 1 or 2, where 0 means the triangle is not 
completed, and 1 or 2 means a completed triangle with the player who owns it.

• Digits 𝑑"$𝑑"%𝑑"& are the upper three triangles left-to-right. 
• Digits 𝑑"'𝑑"(𝑑") are the lower three triangles left-to-right. 

6

13

14
15

16

𝑑"$𝑑"%𝑑"&𝑑"'𝑑"(𝑑") = 202111

17
18



Grid Representation
• There are 12 possible line positions and 6 possible triangles in a 

triangular grid. We use a 18-digit integer 𝑑"𝑑#𝑑$𝑑%𝑑&𝑑'𝑑(𝑑)𝑑*
𝑑"+𝑑""𝑑"#𝑑"$𝑑"%𝑑"&𝑑"'𝑑"(𝑑") (do not use array) to encode all these
things.

• In C++, integer constants should NOT contain leading zero(s). 
Example: an empty grid is not 000000000000000000, but 0.

• in C++, the data type int is typically 32-bit and thus NOT big enough to store an 
18-digit integer. In your program, you have to use a bigger integer type called 
long long.
Example: “long long a = 111111111111222111;”

7



Grid Representation
• Examples for grid representation:

111001011101100220000111111101001220
111111101001220

In C++, integer constants should NOT contain leading zero(s). Line positions Triangles

8



Program Flow

9

Print result

Print initial grid

Start

End

User’s input is 
valid?

Prompt the current player to put a line

Update grid and print grid

Yes
No

End condition?

Swap the player

No

Yes

Print a warning message

Keep the current
player?

No
Yes



Provided Functions
• void printGrid(long long grid) 
• Print the grid and the player’s scores to the screen using the format of 

specification.

printGrid(100000001101000020);

10



Provided Functions
• bool isFilled(long long grid, int pos) 
• Return true if position pos of grid is filled with a line; return false 

otherwise. 
• This function may be called in many places in the program flow.

If grid = 111001011101100220:
isFilled(grid, 3) returns true,
isFilled(grid, 9) returns true,
isFilled(grid, 7) returns false,
isFilled(grid, 11) returns false.

11

bool isFilled(long long grid, int pos) 
{

grid /= 1000000;
for (int i = 0; i < 12 - pos; i++)

grid /= 10;
return (grid % 10 != 0);

}



Required Functions
• void updateGrid(long long &grid, int pos, int p) – Required!
• Update the 𝑝𝑜𝑠;< digit of the reference parameter grid to 1, modeling 

the game play of Player p putting a line in position pos in grid. 
• If any new triangle(s) are completed, the digit of the corresponding 

triangle in grid shall be marked as Player p. 

12



Required Functions
• void updateGrid(long long &gird, int pos, int p) – Required!
• Update the 𝑝𝑜𝑠;< digit of the reference parameter grid to 1, modeling 

the game play of Player p putting a line in position pos in grid. 
• If any new triangle(s) are completed, the digit of the corresponding 

triangle in grid shall be marked as Player p. (Use isFilled to check.)
• Note that you do NOT have to check in this function whether the player 

move is valid or not. (You check validity elsewhere.)

13



Required Functions
• void updateGrid(long long &gird, int pos, int p) – Required!

14

1. Set the 𝑝𝑜𝑠;< digit to 1:
int factor = 1;
for (int i = 0; i < 6 - 5; i++)

factor *= 10;
grid += 2 * factor;

2. Check if new triangle(s) completed:
bool b1 = isFilled(grid, 9);
bool b2 = isFilled(grid, 12);
If (b1 && b2) {

5;< triangle completed;
}
b1 = isFilled(grid, 7);
b2 = isFilled(grid, 11);
If (b1 && b2) {

6;< triangle completed;
}

3. Set the digit of the new triangle(s) to p:
long long factor = 1;
for (int i = 0; i < 18 - 10; i++)

factor *= 10;
grid += 1 * factor;

100000001001000000 

100000001101000000

100000001101000000 

100000001101000020



Required Functions
• void updateGrid(long long &gird, int pos, int p) – Required!
• A special case à putting one line completes two triangles:

• E.g. grid = 101010100000000000, pos = 4, p = 1.
• In this case, remember to set the digit of two new triangles to p.

1. Set the 𝑝𝑜𝑠;< digit to 1:
int factor = 1;
for (int i = 0; i < 6 - 2; i++)

factor *= 10;
grid += 1 * factor;

2. Check if new triangle(s) completed:
bool b1 = isFilled(grid, 1);
bool b2 = isFilled(grid, 3);
If (b1 && b2) {

2;< triangle completed;
}
b1 = isFilled(grid, 5);
b2 = isFilled(grid, 7);
If (b1 && b2) {

3;< triangle completed;
}

3. Set the digit of the new triangle(s) to p:
long long factor = 1;
for (int i = 0; i < 18 - 4; i++)

factor *= 10;
grid += 1 * factor;

101010100000000000 

101110100000000000

101110100000000000 

101110100000011000

Repeat once by 3

15

pos = 4



Required Functions
• int playerScore(long long grid, int p) – Required!
• Return the score of Player p in grid. This is done by counting how many 

triangles Player p owns in grid. Use “/” and “%” to check the last 6 digits
of grid, e.g.:

• grid = 101110100000011000;
• The 2?@ digit of triangles: (grid / 10000) % 10 == 1.

16



Notes
• Do NOT modify the prototypes (name, input parameters, and return

value) of the provided and required functions.
• Do NOT modify the contents of the provided functions.
• Besides the provided and required functions, You can design extra

functions if you find necessary. 

17



Modular Testing
• Instead of directly testing your whole program, please individually test 

the correctness of the required functions’ implementations.
• We can use a simple main function to test one required function.

18

Example 1:
…
int main() {

long long grid = …;
int pos = …;
int p = …;
updateGrid(grid, pos, p);
printGrid(grid);
return 0;

}

Example 2:
…
int main() {

long long grid = …;
int s1 = playerScore(grid, 1);
int s2 = playerScore(grid, 2);
cout << “Player 1’s score: ” << s1 << endl;
cout << “Player 2’s score: ” << s2 << endl;
return 0;

}



Modular Testing
• Instead of directly testing your whole program, please individually test 

the correctness of the required functions’ implementations.
• We can use a simple main function to test one required function.
• Note that the required functions will be separately graded. Only after 

both required functions are well debugged, proceed to write the real 
main function for the game flow.

19



Something Else in Program Flow
• Print messages in your program:

a) “Player 1’s turn (1-12): ” or “Player 2’s turn (1-12): ”
b) “Invalid move! Try again. \n”
c) “Player 1 wins!” or

“Player 2 wins!” or
“Draw game!”

20

a)
b)

c)



Something Else in Program Flow
• Check if the user input is valid. A user input is invalid if:

a) Outside the range 1–12 OR
b) The input position was already filled. (Use isFilled to check)

21



Something Else in Program Flow
• Check if the user input is valid. A user input is invalid if:

a) Outside the range 1–12 OR
b) The input position was already filled. (Use isFilled to check)

22

Example:



Something Else in Program Flow
• Check if the user input is valid. A user input is invalid if:

a) Outside the range 1–12 OR
b) The input position was already filled. (Use isFilled to check)

23

Example:



Something Else in Program Flow
• Check if keep the current player. Don’t swap the player if:

a) The current player has completed triangle(s) AND
b) This turn is NOT this player’s second consecutive turn.

24

Example:



Something Else in Program Flow
• Check if we need to end the game. Many different ways, e.g.:

a) Check if “grid / 1000000” is equal to a special number.

25



Summary

26

Function printGrid(params)
Refer to the page 21-25 of the slides

Function updateGrid(params)
Function playerScore(params)



Q&A

27


