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Outline

• Assignment 4: Dots and Triangles
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Requirement
• Assignment 4: Dots and Triangles
• Deadline: 20:00, Wed 1 Apr 2020
• Requirements:

• Filename: dotstriangles.cpp;
• Insert your name, student ID, and e-mail address as comments at the beginning of 

your source file;
• The output must exactly match the sample output;
• Include suitable comments as documentation;
• Free of compilation errors and warnings;
• No global variables (variables declared outside any functions);
• No functions in the <cmath> library;
• No arrays.
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Game Description 
• Start condition:

• An empty triangular grid of dots and two players.

• Game stage:
• Two players take turns adding one line between two un-joined adjacent dots

(Player 1 takes the first turn).
• A player who completes the third side of a triangle owns that triangle, earns 

one point, and takes an extra turn. A player will not get a third consecutive turn 
even if (s)he makes triangle(s) in the extra turn. 

• End condition: 
• The grid is full, and the player with more points wins. It is a draw if two players 

have the same points. 
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Grid Representation
• There are 12 possible line positions and 6 possible triangles in a 

triangular grid. We use a 18-digit integer 𝑑"𝑑#𝑑$𝑑%𝑑&𝑑'𝑑(𝑑)𝑑*
𝑑"+𝑑""𝑑"#𝑑"$𝑑"%𝑑"&𝑑"'𝑑"(𝑑") (do not use array) to encode all these
things.

• Each digit 𝑑, (1 ≤ 𝑖 ≤ 12) is either 0 or 1, denoting whether the corresponding 
positions 1 to 12 are empty or filled with a line. 
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• Symbol o denotes a dot;
• Symbols ---, /, and \ denote the lines in three 

directions;
• Numbers 1 and 2 inside a completed triangle 

denote the player who owns it.

𝑑"𝑑#𝑑$ …𝑑"# = 110001011101



Grid Representation
• There are 12 possible line positions and 6 possible triangles in a 

triangular grid. We use a 18-digit integer 𝑑"𝑑#𝑑$𝑑%𝑑&𝑑'𝑑(𝑑)𝑑*
𝑑"+𝑑""𝑑"#𝑑"$𝑑"%𝑑"&𝑑"'𝑑"(𝑑") (do not use array) to encode all these
things.

• Each digit 𝑑, (13 ≤ 𝑖 ≤ 18) is 0 or 1 or 2, where 0 means the triangle is not 
completed, and 1 or 2 means a completed triangle with the player who owns it.

• Digits 𝑑"$𝑑"%𝑑"& are the upper three triangles left-to-right. 
• Digits 𝑑"'𝑑"(𝑑") are the lower three triangles left-to-right. 
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𝑑"$𝑑"%𝑑"&𝑑"'𝑑"(𝑑") = 202111
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Grid Representation
• There are 12 possible line positions and 6 possible triangles in a 

triangular grid. We use a 18-digit integer 𝑑"𝑑#𝑑$𝑑%𝑑&𝑑'𝑑(𝑑)𝑑*
𝑑"+𝑑""𝑑"#𝑑"$𝑑"%𝑑"&𝑑"'𝑑"(𝑑") (do not use array) to encode all these
things.

• In C++, integer constants should NOT contain leading zero(s). 
Example: an empty grid is not 000000000000000000, but 0.

• in C++, the data type int is typically 32-bit and thus NOT big enough to store an 
18-digit integer. In your program, you have to use a bigger integer type called 
long long.
Example: “long long a = 111111111111222111;”
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Grid Representation
• Examples for grid representation:

111001011101100220000111111101001220
111111101001220

In C++, integer constants should NOT contain leading zero(s). Line positions Triangles
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Program Flow
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Provided Functions
• void printGrid(long long grid) 
• Print the grid and the player’s scores to the screen using the format of 

specification.

printGrid(100000001101000020);
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Provided Functions
• bool isFilled(long long grid, int pos) 
• Return true if position pos of grid is filled with a line; return false 

otherwise. 
• This function may be called in many places in the program flow.

If grid = 111001011101100220:
isFilled(grid, 3) returns true,
isFilled(grid, 9) returns true,
isFilled(grid, 7) returns false,
isFilled(grid, 11) returns false.

11

bool isFilled(long long grid, int pos) 
{

grid /= 1000000;
for (int i = 0; i < 12 - pos; i++)

grid /= 10;
return (grid % 10 != 0);

}



Required Functions
• void updateGrid(long long &grid, int pos, int p) – Required!
• Update the 𝑝𝑜𝑠;< digit of the reference parameter grid to 1, modeling 

the game play of Player p putting a line in position pos in grid. 
• If any new triangle(s) are completed, the digit of the corresponding 

triangle in grid shall be marked as Player p. 

12



Required Functions
• void updateGrid(long long &gird, int pos, int p) – Required!
• Update the 𝑝𝑜𝑠;< digit of the reference parameter grid to 1, modeling 

the game play of Player p putting a line in position pos in grid. 
• If any new triangle(s) are completed, the digit of the corresponding 

triangle in grid shall be marked as Player p. (Use isFilled to check.)
• Note that you do NOT have to check in this function whether the player 

move is valid or not. (You check validity elsewhere.)
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Required Functions
• void updateGrid(long long &gird, int pos, int p) – Required!
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1. Set the 𝑝𝑜𝑠;< digit to 1:
int factor = 1;
for (int i = 0; i < 6 - 5; i++)

factor *= 10;
grid += 2 * factor;

2. Check if new triangle(s) completed:
bool b1 = isFilled(grid, 9);
bool b2 = isFilled(grid, 12);
If (b1 && b2) {

5;< triangle completed;
}
b1 = isFilled(grid, 7);
b2 = isFilled(grid, 11);
If (b1 && b2) {

6;< triangle completed;
}

3. Set the digit of the new triangle(s) to p:
long long factor = 1;
for (int i = 0; i < 18 - 10; i++)

factor *= 10;
grid += 1 * factor;

100000001001000000 

100000001101000000

100000001101000000 

100000001101000020



Required Functions
• void updateGrid(long long &gird, int pos, int p) – Required!
• A special case à putting one line completes two triangles:

• E.g. grid = 101010100000000000, pos = 4, p = 1.
• In this case, remember to set the digit of two new triangles to p.

1. Set the 𝑝𝑜𝑠;< digit to 1:
int factor = 1;
for (int i = 0; i < 6 - 2; i++)

factor *= 10;
grid += 1 * factor;

2. Check if new triangle(s) completed:
bool b1 = isFilled(grid, 1);
bool b2 = isFilled(grid, 3);
If (b1 && b2) {

2;< triangle completed;
}
b1 = isFilled(grid, 5);
b2 = isFilled(grid, 7);
If (b1 && b2) {

3;< triangle completed;
}

3. Set the digit of the new triangle(s) to p:
long long factor = 1;
for (int i = 0; i < 18 - 4; i++)

factor *= 10;
grid += 1 * factor;

101010100000000000 

101110100000000000

101110100000000000 

101110100000011000

Repeat once by 3
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pos = 4



Required Functions
• int playerScore(long long grid, int p) – Required!
• Return the score of Player p in grid. This is done by counting how many 

triangles Player p owns in grid. Use “/” and “%” to check the last 6 digits
of grid, e.g.:

• grid = 101110100000011000;
• The 2?@ digit of triangles: (grid / 10000) % 10 == 1.
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Notes
• Do NOT modify the prototypes (name, input parameters, and return

value) of the provided and required functions.
• Do NOT modify the contents of the provided functions.
• Besides the provided and required functions, You can design extra

functions if you find necessary. 
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Modular Testing
• Instead of directly testing your whole program, please individually test 

the correctness of the required functions’ implementations.
• We can use a simple main function to test one required function.
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Example 1:
…
int main() {

long long grid = …;
int pos = …;
int p = …;
updateGrid(grid, pos, p);
printGrid(grid);
return 0;

}

Example 2:
…
int main() {

long long grid = …;
int s1 = playerScore(grid, 1);
int s2 = playerScore(grid, 2);
cout << “Player 1’s score: ” << s1 << endl;
cout << “Player 2’s score: ” << s2 << endl;
return 0;

}



Modular Testing
• Instead of directly testing your whole program, please individually test 

the correctness of the required functions’ implementations.
• We can use a simple main function to test one required function.
• Note that the required functions will be separately graded. Only after 

both required functions are well debugged, proceed to write the real 
main function for the game flow.
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Something Else in Program Flow
• Print messages in your program:

a) “Player 1’s turn (1-12): ” or “Player 2’s turn (1-12): ”
b) “Invalid move! Try again. \n”
c) “Player 1 wins!” or

“Player 2 wins!” or
“Draw game!”
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Something Else in Program Flow
• Check if the user input is valid. A user input is invalid if:

a) Outside the range 1–12 OR
b) The input position was already filled. (Use isFilled to check)
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Something Else in Program Flow
• Check if the user input is valid. A user input is invalid if:

a) Outside the range 1–12 OR
b) The input position was already filled. (Use isFilled to check)

22

Example:



Something Else in Program Flow
• Check if the user input is valid. A user input is invalid if:

a) Outside the range 1–12 OR
b) The input position was already filled. (Use isFilled to check)
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Example:



Something Else in Program Flow
• Check if keep the current player. Don’t swap the player if:

a) The current player has completed triangle(s) AND
b) This turn is NOT this player’s second consecutive turn.
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Example:



Something Else in Program Flow
• Check if we need to end the game. Many different ways, e.g.:

a) Check if “grid / 1000000” is equal to a special number.
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Summary
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Function printGrid(params)
Refer to the page 21-25 of the slides

Function updateGrid(params)
Function playerScore(params)



Q&A
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