
Sort Detective Lab
Credit: Assignment from Sort Detective developed by David B. Levine

1 INTRODUCTION
The primary objective of this lab is for you to apply your theoretical knowledge of sorting algorithms to
solve a problem of poor user interface design. More specifically, you will be given a program which is
designed to measure comparisons, data movements, and execution time for the seven sorting
algorithms discussed in class. Unfortunately, the designer of the program did not label the buttons
properly. You must apply your understanding of the general properties of the algorithms (and in some
cases of the code used to implement them) to determine the proper labeling of the buttons.

The secondary objective of this lab is for you to gain experience writing a concise, but complete analysis
of a system.

2 BACKGROUND
As you know from class, if you double the size of the data set that you give to a quadratic algorithm, it
will do four times the work; by contrast, an O(n log n) algorithm will do a bit more than twice as much;
and, a linear algorithm will do only twice as much work. As you also know, the characteristics of the
input data set can affect the expected performance of many of our sorting algorithms. Before you begin
the lab, you should review the expected performance of the algorithms on various data sets.

The sorting algorithms under study include (in no particular order): bubble sort, insertion sort, merge
sort, quick sort, heap sort, and selection sort.

3 INSTRUCTIONS - WARNING: READ ALL OF THE INSTRUCTIONS BEFORE

BEGINNING!
1. Begin by copying the Sort Detective application from blackboard. Execute it and play with it a

bit. Notice that the button names do not give any indication which sort they will
execute. Notice also, that if you create a small list, then that list is shown to you in the window.

2. Devise a plan which will enable you to match the particular algorithms to the button
names. Hint: It may make sense to try to divide the sorts into initial groups and then to work on
each group separately. Divide and conquer: it works for algorithms and it can work here, too!

3. Execute your plan, taking careful notes as you go.

4. Describe the results of your experiment in a summary document. Begin with a summary of the
matching and then show the rationalization process that justifies it.

4 A NOTE ON WRITING
There is no coding in this lab. Thus, you should expect that a significant portion of the lab grade for this
lab will be determined by the quality of the writing of the report. This includes the completeness of the
report, the clarity (and grammar) of the writing, and general presentation. It is possible to receive a
poor grade even if you match all sorts correctly due to sloppy writing.

Some of the sorts are very difficult to distinguish. A carefully outlined experiment may compensate for
an error in these cases if the writing makes it clear that your conclusions/guesses are substantiated by
the data.

Finally, remember that your report needn't detail every experiment you ran. Rather, it should give
sufficient information to justify your conclusions. It is possible to write a very short report that is
completely correct if your experiments are well-chosen. After you learn the matching, you might
consider whether there was a shorter way to arrive at your conclusion!

5 DELIVERABLES
The Final report from Step 4.

Example
You will need much more analysis for the assignment but the following gives an idea of what kind of
analysis will be required.

5.1.1 General Results
Button Name Searching Algorithm

Algorithm 1 Binary Search

Algorithm 2 Sequential Search

5.1.2 Rationale
We chose to search data sets of size 500, 1000, and 2000, looking for the last item each time. Algorithm
1 took 500, 1000, and 2000 comparisons each time, doubling the number of comparisons each time the
size of the searchable list doubled. Algorithm 2 took many fewer comparisons and this number
increased by only one each time we doubled the size of the searchable list.

Since sequential search is linear, we conclude that Algorithm 2 is SEQUENTIAL SEARCH.

Then, by process of elimination, we conclude that Algorithms 1 is BINARY SEARCH.

	Credit: Assignment from Sort Detective developed by David B. Levine
	1 Introduction
	2 Background
	3 Instructions - Warning: read all of the instructions before beginning!
	4 A Note on Writing
	5 Deliverables
	5.1.1 General Results
	5.1.2 Rationale

