COMPUTER SCIENCES AND SOFTWARE ENGINEERING
AUBURN UNVERSITY

COMP 4320

Introduction to Computer Networks
Fall 2021

Project 1

Implementation of a Simple Web Service
over the UDP Transport Service

Due in Canvas: 11:55pm Oct 28, 2021

Objective

The purpose of this assignment is to implement a simple Web service over the UDP
transport service. You will write the Web client and server programs that will
communicate over your own computer or the College of Engineering LAN. You will also
learn other important functions in computer networks: (1) implementation of
segmentation and re-assembly of long messages, (2) detecting errors in the received
packets, and (3) emulation of packet errors generation and detection.

Overview

In this project you will implement a simple web client application and a simple web
server application that must be written in C or C++ and execute correctly either in your
own computer(s) or in the COE tux Linux computers. Submission of these client-server
programs written in any other languages will not receive any credit. You must also
implement segmentation and re-assembly functions, an error detection function and a
gremlin function (that can corrupt packets with a specified probability). The overview of
these software components is shown in Figure 1 below.



Simple Web Server Application Simple Web Client Application

Segmentation & Re-Assembly Segmentation & Re-Assembly

Error Detection Error Detection

Transport Layer

(UDP Datagrams) Transport Layer
(UDP Datagrams)

Figure 1. Overview of the Software Components

The Web client initiates the communication by sending an HTTP request to the Web
server. This outgoing HTTP request is not processed by the segmentation and re-
assembly, error detection or the Gremlin function. The HTTP request is sent through the
transport UDP datagram socket to the Web server.

At the Web server host, the HTTP request is also not processed by those functions at the
Web server host. The Web server will then process the request, e.g. GET command, by
reading the file requested by the Web client. Since the requested file may be large, the
server application will use the segmentation function to partition the file into smaller
segments that will fit into a packet of size allowable by the network. Each segment is
then placed into a 512-byte packet that is allowed by the network. The packet must
contain a header that contains information for error detection and other protocol
information. You may design your own header fields that are of reasonable sizes.
Another field that must be in the header is a sequence number. The packet is then passed
to the error detection function which, at the server (sending process), will compute the
checksum and place the checksum in the header. The packet is finally sent via the UDP
socket to the Web client.

When the packet is received by the Web client host UDP socket, the packet will be
processed by the Gremlin function which may randomly cause errors in some packet.
This will emulate errors that may be generated by the network links and routers. The
packet is then processed by the error detection function that will detect possibility of error
based on the checksum. The packet is then processed by the segmentation and re-
assembly function that re-assembles all the segments of the file from the packets received
into the original file. The file is then displayed by the Web client application using a
display software or browser.

Descriptions



This project introduces you to network programming in your own computer or the
College of Engineering Unix computing environment (tux Linux workstations). In both
cases, all communication between the client and the server must be through the socket
API with real IP addresses, i.e. you cannot use the 127 loopback IP addresses, e.g.
127.0.0.1. Your computer must be connected to the Internet and you must be able to find
the real IP address assigned to your computer. Use that real IP address for creating your
sockets and for all communication between the client and the server.

Use the UDP C/C++ client and server programs presented in class. You need to modify
the programs to ensure that they run correctly in your environments. For example, you
must change the server IP address to the address of the machine in which you will be
running the server program. Also make sure that the correct ports are used.

Now, modify the programs to implement a simple Web service as follows:
1. Modify the client program so that it will send a HTTP request to a simple Web
server to retrieve a data file. The HTTP request message will be of the form:

GET TestFile.html HTTP/1.0

The server will send HTTP response messages in 512-byte packets until the end
of the file (see below). The client will then receive each 512-byte packet in a loop
and writes them into a file sequentially. When it reads a 1-byte message with a
NULL character that indicates the end of the file, it will then close the file. Add
print statements in the client program to indicate that it is sending and receiving
the packets correctly, i.e. print the messages that it sends and receives.

2. Modify the server program so that it responds to clients' HTTP requests. The
server constructs HTTP response messages by putting header lines before the
object itself that is to be sent. The 4 header lines are supposed to be of the form:

HTTP/1.0 200 Document Follows\r\n
Content-Type: text/plain\r\n
Content-Length: xxx\r\n

\r\n

Data

(note: \r 1isa carriage return, \n is a line feed, xxx 1is the number of bytes in
the HTML file being sent and data is the requested HTML file)

The server then reads the requested HTML file (an ASCII file, must be at least 50
Kbytes), put them in a buffer and sends the content of the buffer to the Web
client who made the request. The HTTP response messages are sent in 512-byte
packets until the end of the file. At the end of the file, it transmits 1 byte (NULL
character) that indicates the end of the file. It will then close the file.

Add print statements in the server program to indicate that it is receiving and
sending the packets correctly, i.e. print the messages that it receives and sends.



Gremlin Function

Your program must allow the probability of damaged packets to be input as an argument
when the program is executed. This packet damage probability is passed to your Gremlin
function. You will implement a gremlin function to simulate two possible scenarios in the
transmission line: transmission error that cause packet corruption and correct delivery.
When the receiving process receive each packet, it first pass the packet to a gremlin
function which will randomly determine whether to change (corrupt) some of the bits or
pass the packet as it is to the receiving function. The gremlin function uses a random-
number generator to determine whether to damage a packet or pass the packet as it is to
the receiving function.

If it decides to damage a packet, it will decide on how many and which byte to change.
The probability that a given packet will be damaged, P(d), is entered as an argument of
the client program at runtime. If the probability of damaging a packet is .3, then three out
of every ten packets will be damaged. If the packet is to be damaged, the probability of
changing one byte is .5, the probability of changing two bytes is .3, and the probability of
changing 3 bytes is .2. Every byte in the packet is equally likely to be damaged.

The packet is then passed from the gremlin function to the error detection function that
will check for errors in the packet.

Error Detection Function

The sending process, e.g. the Web Server, will compute the checksum for the packet that
is to be sent. The checksum is calculated by simply summing all the bytes in the packet.
The checksum is then inserted into the checksum header field of the packet.

The receiving process, e.g. the Web client, will then use the same algorithm for
computing the checksum that the sending process used. It will calculate the checksum by
summing all the bytes in the received packet. It then compares the computed checksum
with the checksum received in the packet. If the two checksums match, then it assumes
that there is no error, otherwise there is at least an error in the packet.

When the receiving process detects an error in a packet, it will print out a message
indicating the packet’s sequence number and that there is an error in the packet.

In this project, you must not try to correct for errors in the packet using any network
protocol or scheme; you are required only to indicate that a packet is in error.

Testing

Run the modified UDP C/C++ client and UDP C/C++ server programs, with the
segmentation and re-assembly, error detection and gremlin functions, either on your own
computer or the College of Engineering tux Linux workstations. In both cases, all
communication between the client and the server must be through the socket API with



real IP addresses, i.e. you cannot use the 127 loopback IP addresses, e.g. 127.0.0.1.
Your computer must be connected to the Internet and you must be able to find the real IP
address assigned to your computer. Use that real IP address for creating your sockets
and for all communication between the client and the server.

If you use Auburn University’s tux Linux workstations you should use different tux
Linux computers for the client and the server processes. The tux computers that are
available for you use through remote access are tux050-tux065, tux237-tux252.
Altogether, there are 32 tux machines. If you are using the tux computers, send me email
with all your group members and I’ll assign to you open port numbers for the tux
computers so that you can avoid interfering with each other’s message transmission.

In both environments that you use for your execution environment, capture the execution
trace of the programs. In Linux, use the script command to capture the trace of the
execution of the UDP C/C++ client and UDP C/C++ server programs.

Print the content of the input file read by the server program and the output file received
by the client program.

Submission

Submit your source codes, the script of the execution traces of the programs, the file that
was sent by the server and the file that was received by the client. Submit these in Canvas
on or before the due date.



