
CMSC 430 Project 1

The first project involves modifying the attached lexical analyzer and the compilation listing

generator code. You need to make the following modifications to the lexical analyzer,

scanner.l:

1. A new token ARROW should be added for the two character punctuation symbol =>.

2. The following reserved words should be added:

case, else, endcase, endif, if, others, real, then, when

Each reserved words should be a separate token. The token name should be the same as

the lexeme, but in all upper case.

3. Two additional logical operators should be added. The lexeme for the first should be or

and its token should be OROP. The second logical operator added should be not and its

token should be NOTOP.

4. Five relational operators should be added. They are =, /=, >, >= and <=. All of the

lexemes should be represented by the single token RELOP.

5. One additional lexeme should be added for the ADDOP token. It is binary -.

6. One additional lexeme should be added for the MULOP token. It is/.

7. A new token REMOP should be added for the remainder operator. Its lexeme should be

rem.

8. A new token EXPOP should be added for the exponentiation operator. Its lexeme should

be **.

9. A second type of comment should be added that begins with // and ends with the end of

line. As with the existing comment, no token should be returned.

10. The definition for the identifiers should be modified so that underscores can be included,

however, consecutive underscores, leading and trailing underscores should not be

permitted.

11. A real literal token should be added. It should begin with a sequence of one or more

digits following by a decimal point followed by zero or more additional digits. It may

optionally end with an exponent. If present, the exponent should begin with an e or E,

followed by an optional plus or minus sign followed by one or more digits. The token

should be named REAL_LITERAL.

12. A Boolean literal token should be added. It should have two lexemes, which are true and

false. The token should be named BOOL_LITERAL.

You must also modify the header file tokens.h to include each the new tokens mentioned

above.

The compilation listing generator code should be modified as follows:

1. The lastLine function should be modified to compute the total number of errors. If any

errors occurred the number of lexical, syntactic and semantic errors should be displayed.

Rectangle

If no errors occurred, it should display Compiled Successfully. It should return the

total number of errors.

2. The appendError function should be modified to count the number of lexical, syntactic

and semantic errors. The error message passed to it should be added to a queue of

messages that occurred on that line.

3. The displayErrors function should be modified to display all the error messages that

have occurred on the previous line and then clear the queue of messages.

An example of the output of a program with no lexical errors is shown below:

 1 (* Program with no errors *)

 2

 3 function test1 returns boolean;

 4 begin

 5 7 + 2 > 6 and 8 = 5 * (7 - 4);

 6 end;

Compiled Successfully

Here is the required output for a program that contains more than one lexical error on the same

line:

 1 -- Function with two lexical errors

 2

 3 function test2 returns integer;

 4 begin

 5 7 $ 2 ^ (2 + 4);

Lexical Error, Invalid Character $

Lexical Error, Invalid Character ^

 6 end;

Lexical Errors 2

Syntax Errors 0

Semantic Errors 0

You are to submit two files.

1. The first is a .zip file that contains all the source code for the project. The .zip file

should contain the flex input file, which should be a .l file, all .cc and .h files and a

makefile that builds the project.

2. The second is a Word document (PDF or RTF is also acceptable) that contains the

documentation for the project, which should include the following:

a. A discussion of how you approached the project

b. A test plan that includes test cases that you have created indicating what aspects

of the program each one is testing and a screen shot of your compiler run on that

test case

c. A discussion of lessons learned from the project and any improvements that could

be made

Grading Rubric

Criteria Meets Does Not Meet

Functionality

70 points 0 points

Defines new comment lexeme (5) Does not define new comment lexeme
(0)

Correctly modifies identifier definition
to include underscores (5)

Does not correctly modify identifier
definition to include underscores (0)

Adds real and Boolean tokens (5) Does not add real and Boolean tokens
(0)

Defines additional logical operators (5) Does not define additional logical
operators (0)

Defines additional relational operators
(5)

Does not define additional relational
operators (0)

Defines additional arithmetic operators
(5)

Does not define additional arithmetic
operators (0)

Defines additional reserved words and
arrow symbol(5)

Does not define additional reserved
words and arrow symbol (0)

Adds new tokens to the token header
file (5)

Does not add new tokens to the token
header file (0)

Implements modifications to display
multiple errors on the same line (15)

Does not implement modifications to
display multiple errors on the same line
(0)

Implements modifications to count and
display each type of compilation error
(15)

Does not Implement modifications to
count and display each type of
compilation error (0)

Test Cases

15 points 0 points

Includes test case containing all
lexemes (5)

Does not include test case containing
all lexemes (0)

Includes test case with multiple errors
on one line (5)

Does not include test case with
multiple errors on one line (0)

Includes test case with no errors (5) Does not include test case with no
errors (0)

Documentation

15 points 0 points

Discussion of approach included (5) Discussion of approach not included (0)

Lessons learned included (5) Lessons learned not included (0)

Comment blocks with student name,
project, date and code description
included in each file (5)

Comment blocks with student name,
project, date and code description not
included in each file (0)

