CS 202 — Assignment #10

Purpose: Learn concepts regarding linked lists, stacks, and queues.
Points: 200 pts

Assignment:

Design and implement a series of C++
template classes to implement a stack and
queue as follows:

linkedStack to implement the stack
using a linked list

linkedQueue to implement the queue
with a linked list

A main will be provided that can be used to
test the linkedStack and linkedQueue classes.

- -

Paul: “If you play Maybe I’'m Amazed backwards,
you’ll hear a recipe for a really ripping lentil soup.”

Each link in the linkedStack and

linkedQueue should hold one second of audio at 32kh. As such, we will be us using a custom

data structure for this assignment. Each link will have an array, and when full, a new link will be

added.

When the linkedStack and linkedQueue classes are fully functional, create a main program using
the a stack and queue to reverse a sound recording. This will be useful for detecting satanic
messages in music'. Specifically, your program should read the data file, reverse the recording,
and place the output into a new data file.

The input and output file names should be read from the command line. If neither file name is
not provided on the command line, the program should display a usage message detailed what
should be entered (i.e., Usage: ./reverse <inputFile> <outputFile>). If either file
name is provided, but can not be opened, an error message should be displayed (i.e, Error,
unable to open input file: soundClip.ogg).

Linked List Implementation

Each node in the linked list should hold size number of elements. For example, if size=100, each
link should hold 100 elements. Only when a 101* element is added, should a new link should be
created. And, the next link would not be created until the 201* element is added.

]]

L. = - &—-

When all items are removed from a specific link, only then should the link be deleted.

1 For more information, refer to: http://en.wikipedia.org/wiki/Backmasking

Submission:
e All files must compile and execute on Ubuntu and compiler with C++11.
o Submit: reverse.cpp, linkedQueue.h, linkedStack.h, makefile

e Submit source files list on assignment page.

e Once you submit, the system will score the project and provide feedback.
o Ifyou do not get full score, you can (and should) correct and resubmit.
o You can re-submit an unlimited number of times before the due date/time.

e Late submissions will be accepted for a period of 24 hours after the due date.

Digital Sound Information

Computer audio files are digital versions of the original analog sound. The analog sound is
sampled several thousand of times a second and that information is stored as numbers. This
process is referred to as Analog to Digital Conversion (i.e., 'A-to-D").

The Unix utility program, sox* (Sound eXchange) allows us to convert from standard audio
formats (such as .wav and .ogg) to data files (human readable, text format). We will use the sox
to convert a standard sound file into a data file. The program will read the data file and create a
new data file. We will then use sox to convert the new data file back into a standard audio file.
The standard audio file can be played with most music players.

The .dat data file is a text file containing the digital version of the sound information in human
readable format. The file starts with a a couple of lines describing the sample rate and the
number of channels encoded. The remaining lines contain a time reference and sample value
(between -1.0 and +1.0).

Below is the beginning of a sample file:

; Sample Rate 32000
; Channels 1

0
3.125e-05
6.25e-05
9.375e-05
0.000125
0.00015625

(ol eNeoNeNoNal

Notice that for this example, the numbers in the first column increase by 1/32000 each step. This
is because the sample rate is 32kHz. Note, CDs are typically 44.1kHZ and multiple channels.

Reversing an Sound File
Below is a small excerpt of a single channel sound file. The numbers in the first column are the
time reference (in seconds). The numbers in the second column are the sample value.
0.053 0.00054931641
0.05303125 -0.00021362305
0.0530625 -0.00091552734
0.05309375 -0.0012512207
0.053125 -0.0011291504

0.05315625 -0.00091552734
0.0531875 -0.00082397461

To “reverse” the audio, we will reverse the numbers in the second column (and only the numbers
in the second column). We will use a stack and queue to accomplish this function. Note, the
original two header lines (see example in digital sound information section) must be maintained.

2 For more information, refer to: http://en.wikipedia.org/wiki/SoX

Sound Exchange:
To install the sox utility, type:

ed-vm% sudo apt install sox

You will be prompted for the administrator password. Nofe, the ed-vm% is the prompt for my
computer. Yours will be different. Once the sox utility is installed, to convert the audio file
vogonMessage.ogg into a data file;

ed-vm% sox vogonMessage.ogg vogonMessage.dat
The first file (vogonMessage . ogqg) is the input and the second file (vogonMessage .dat) is
the output.
Thus, to convert a data file into an audio file;

ed-vm% sox revVogonMessage.dat revVogonMessage.ogg

The file formats are determined based on the extensions.

Processing Overview
The general process is outlined as follows:

1. Using sox, convert the standard audio file (.wav, .ogg, etc.) into a .dat data file
Using your program
1. read the input file (.dat format)
2. reverse the recording data
3. create the output file (.dat format)
3. Using sox, convert the .dat data file into a standard audio file (.wav, .ogg, etc.).
4. Optionally, play one or both files (i.c., play file.ogg).

Once the final audio file is created, you can listen to it using an audio player of your choice (and
then check for satanic messages). The command line “play” utility is installed with sox. For
simplicity we will use single channel recordings and the Ogg® format (.ogg) which an open (non-
proprietary) format.

A script file is provided to perform the outlined processing.

Main File

A template for the main file, reverse. cpp, is provided. You will need to complete the noted
sections (command line argument handling and audio data file read and write operations). The
error message strings and file output statements are included in the template. You will need to
ensure the appropriate message are printed at the appropriate times. Note, regardless of the
condition, always use “return EXIT SUCCESS” even if an error occurred.

Make File:
You will need to develop a make file. You should be able to type:

make

Which should create the executable file, reverse. You may refer to previous assignments for
examples of make files.

3 For more information, refer to: http://en.wikipedia.org/wiki/Ogg

Class Descriptions

e Linked List Stack Class

The linked stack class will implement a stack with a linked list including the specified
functions. We will use the following node structure definition.

template <class myType>
struct nodeType {
myType *dataSet;
unsigned int top;
nodeType<myType> *link;
bi

The dataSet[] array should hold size entries. Only when the array is filled a new element
linked list should be created.

linkedStack<myType>

-nodeType<Type> *stackTop

-size: unsigned int

-count: unsigned int

—-ARR MIN 5: static constexpr unsigned int

-ARR MAX = 96000: static constexpr unsigned int

-ARR DEFAULT = 22050: static constexpr unsigned int

+linkedStack (unsigned int=ARR DEFAULT)

+~1linkedStack ()

+isEmptyStack () const: bool

+initializeStack(): void

+stackCount () : unsigned int

+push (const myType& newltem): void

+top () const: myType

+pop () : void

Function Descriptions

The linkedStack() constructor should initialize the stack to an empty state
(stackTop=nullptr). If the passed link array size is not valid, set the size to the default
(ARR_DEFAULT).

The ~linkedStack() destructor should delete the stack (including releasing all the allocated
memory).

The initializeStack() function will create and initialize a new, empty stack.

The isEmptyStack() function should determine whether the stack is empty, returning true
if the stack is empty and false if not.

The stackCount() function should return the count of elements on the stack (across all
links).

The push(const Type&k newltem) function will add the passed item to the top of the stack.
The top variable should be used to track the stack top for the current node. If current
node array is full, a new node with a new node array must be created to hold the new
item.

The pop() function will remove the top item from the stack (and return nothing). If the
stack is empty, nothing should happen and no error message. If the item removed is the
last item from the node array, the node link must be deleted along with the node array.
The top() function will return the current top of the stack without removing it.

e Linked List Queue Class
The linked queue class will implement a queue with a linked list including the specified
functions. We will use the following node structure definition.

template <class myType>

struct queueNode

{
myType *dataSet;
unsigned int front, back;
queueNode<myType> *1link;

};

The dataSet[] array should hold size entries. Only when the array is filled a new element
linked list should be created.

linkedQueue<myType>

—queueNode<myType> *queueFront

-queueNode<myType> *queueRear

-size: unsigned int

-count: unsigned int

-ARR MIN = 5: static constexpr unsigned int

-ARR MAX = 96000: static constexpr unsigned int

—-ARR DEFAULT = 22050: static constexpr unsigned int

+1linkedQueue (unsigned int=ARR DEFAULT)

+~1linkedQueue ()

+isEmptyQueue () const: bool

+initializeQueue () : void

+addItem (const myType& newltem) : void

+front () const: myType

+back () const: myType

+deleteltem() : void
+queueCount () : unsigned int
+printQueue () : void

Function Descriptions - Queue

+ The linkedQueue() constructor should initialize the queue to an empty state (queueFront
= NULL and gueueRear = NULL).

« The initializeQueue() function will create and initialize a new, empty queue. If the
passed link array size is not valid, set the size to the default (ARR_DEFAULT).

« The ~linkedQueue() destructor should delete the queue (including releasing all the
allocated memory). This includes each node and the node array.

« The isEmptyQueue() function should determine whether the queue is empty, returning
true if the queue is empty and false if not.

The front() function will return the current front of the queue without removing it.

« The back() function return the current back of the queue without removing it.

« The addltem(const Type&k newltem) function will add the passed item to the back of the
queue. The front and back variables should be used to track the front and back for the
current node. If current node array is full, a new node with a new node array must be
created to hold the new item.

« The deleteltem() function will remove the front item from the queue (and return nothing).
If the queue is empty, nothing should happen and no error message provided. If the item
removed is the last item from the node array, the node link must be deleted along with the
node array.

The printQueue() function should print the current elements of queue.

« The queueCount() function should return the current count of elements in the queue
across all links.

Refer to the example executions for output formatting. Make sure your program includes the
appropriate documentation. Note, points will be deducted for especially poor style or inefficient
coding.

Example Execution:
Below is an example program execution for the main.

CS 202 - Assignment #10
Basic Testing for Linked Stack

khkkhkkkhkkkhkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkkhkhkkhkhkhkhkhhkhkhkkkhkhkkhkhkkhkhkkhkhkkhkhkkkhkhkkhkhkkkx
Test Stack Operations - Reversing:

Original List: 2 4 68 10 12 14 16 18 20
Reverse List: 20 18 16 14 12 10 8 6 4 2
Copy A (original): 2 4 6 8 10 12 14 16 18 20

Original Shorts List:

383 886 777 915 793 335 386 492 649 421 362 27 690 59 763 926 540 426 172 736
211 368 567 429 782 530 862 123 67 135 929 802 22 58 69 167 393 456 11 42

229 373 421 919 784 537 198 324 315 370

Reverse Shorts List:

370 315 324 198 537 784 919 421 373 229 42 11 456 393 167 69 58 22 802 929
135 67 123 862 530 782 429 567 368 211 736 172 426 540 926 763 59 690 27 362
421 649 492 386 335 793 915 777 886 383

Copy A (original):

383 886 777 915 793 335 386 492 649 421 362 27 690 59 763 926 540 426 172 736
211 368 567 429 782 530 862 123 67 135 929 802 22 58 69 167 393 456 11 42

229 373 421 919 784 537 198 324 315 370

Test Stack Operations - Doubles:

Original List: 1.1 3.35.57.7 9.9 11.11 13.13 15.5 17.1 19.2 21.3 23.4 25 5
27.6 29.7 31.8 33.9 35.1 37.2
Reverse List: 37.2 35.1 33.9 31.8 29.7 27.6 5 25 23.4 21.3 19.2 17.1 15.5

13.13 11.11 9.9 7.7 5.5 3.3 1.1
Copy A (original): 1.1 3.3 5.5 7.7 9.9 11.11 13.13 15.5 17.1 19.2 21.3 23.4 25 5
27.6 29.7 31.8 33.9 35.1 37.2

Test Stack Operations - Many Items:

Many items, test passed.

Game Over, thank you for playing.
ed-vm%
ed-vm%
ed-vm%

ed-vm% ./testQueue

CS 202 - Assignment #10
Basic Testing for Linked Queue

khkkhkkkhkkhkhkhkhkhkhkkhkhkhkkhkhkkhkhkkhkhkhkhkhkhkkhkhkkhkhkhkhkkhkhhkhkhkhkkhkhkhkhkhkkhkhkkhkhkhkhkhhkkkhkx
Test Queue Operations - Integers:

Queue 0 (original): 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Queue 0 (count): 20

Queue 1 (odds): 1357911 13 15 17 19
Queue 1 (count): 10

Queue 2 (evens): 2 4 6 810 12 14 16 18 20
Queue 2 (count): 10

khkkkhkkkhkhkhkkhkhkhkkhkhkkkhkhkhkkhkhkhkkhkhkhkkhkhkhkkhkhkkkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkkhkhkkkhxkx

Test Queue Operations - Shorts:

Shorts Queue 0 (original):

1234567891011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Shorts Queue 0 (count): 50

Shorts Queue 1 (odds):
1357 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Shorts Queue 1 (count): 25

Shorts Queue 2 (evens):
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Shorts Queue 2 (count): 25

Test Queue Operations - Floats:

Queue 3 (floats, original):

1.5
Queue 3 (floats, modified): 1.5
Queue (count) : 7
Queue (first item): 1.5

Queue 3 (last item): 7.5

Test Queue Operations - Many Items:

Many items, test passed.

Game Over, thank you for playing.
ed-vm$%
ed-vm$
ed-vm$%
ed-vm$
ed-vm$%

ed-vm$
ed-vm$%
ed-vm$
ed-vm$%
ed-vm$
Usage:
ed-vm$
ed-vm$%
Error,
ed-vm$%
ed-vm$
Error,
ed-vm$
ed-vm$%
ed-vm$
ed-vm$%
ed-vm$
ed-vm$%
ed-vm$
ed-vm$%
ed-vm$
Error,
ed-vm$
ed-vm$%
ed-vm$
ed-vm$%
ed-vm$

./reverse
./reverse <inputFileName> <outputFileName>

./reverse none none none
must provide input and output file names.

./reverse null.txt tmp.dat
unable to open input file: null.txt

sox goodnews.ogg goodnews.dat
./reverse goodnews.dat good.dat
sox good.dat good.ogg

play good.ogg

./rev goodnews.ogg
must provide output file name.

./rev goodnews.ogg good.ogg
play good.ogg

