
CS302

Assignment 9: RPD

Description

Nemesis is on the lose, and for some reason it’s after Leon (I guess for training purposes before Jill Valentine
becomes the target, this is because I feel Mr. X isn’t as cool as Nemesis, so we’re sticking to this plot). Leon
is trapped in the Raccoon City Police Department, and he needs to find a way out before Nemesis shows
up. As always, the fun of Resident Evil is spending hours with puzzles and opening doors and of course
the doors are locked so you have to find the key, and you spend weeks in resident evil 3 trying to find keys
back before YouTube existed so you either had to struggle through it without any walk through or you were
forced to but the play through guide.

Ok, enough with that rant. So in this program, there is a secret escape from the police station, each room
has a set of doors that can be opened that goes to a new room, thus we can visualize the police department
as a graph. Each room is a node and a door in a room is an edge that goes to a room (a node). The graph
could be initially disconnected so you need to find rooms that have keys that unlock a door (i.e. add a new
edge into the graph that simulates a new opened-able door). You will need to design the following classes
to implement the graph.

Adjacency List

template <class Type >

class vertex

{

struct node

{

Type item;

node * link;

};

public:

class edgeIterator

{

public:

friend class vertex;

edgeIterator ();

edgeIterator(node *);

edgeIterator operator ++(int);

Type operator *();

bool operator ==(const edgeIterator &);

bool operator !=(const edgeIterator &);

private:

1

node * current;

};

vertex ();

vertex(const vertex <Type >&);

const vertex& operator =(const vertex <Type >&);

~vertex ();

edgeIterator begin ();

edgeIterator end ();

void addEdge(const Type &);

private:

node * neighbors;

};

Each member of edgeIterator class will contain/perform the following

• node * current - stores the address of a node object where the edgeIterator object points to

• vertex<Type>::edgeIterator::edgeIterator() - default constructor that sets current to NULL

• vertex<Type>::edgeIterator::edgeIterator(vertex<Type>::node * edge) - a constructor that
takes in a node object which gets assigned to current

• typename vertex<Type>::edgeIterator vertex<Type>::edgeIterator::operator++(int) - an op-
erator function that sets the iterator to point to the next node object, you will need to set current to
point to the next node

• Type vertex<Type>::edgeIterator::operator*() - an operator that dereferences the iterator, re-
turns the item field of the node that current points to

• bool vertex<Type>::edgeIterator::operator==(const vertex<Type>::edgeIterator& rhs) - com-
pares the address of the iterator on the left side with the iterator on the right side, returns true if they
both point to the same node, and returns false otherwise

• bool vertex<Type>::edgeIterator::operator!=(const vertex<Type>::edgeIterator& rhs) - com-
pares the address of the iterator on the left side with the iterator on the right side, returns false if
they both point to the same node, and returns true otherwise

Each member of vertex class will contain/perform the following

• struct node - needed for the adjacency list

• node * neighbors - the head of the linked list, the linked list stores all the neighbors of the vertex

• vertex<Type>::vertex() - default constructor that sets neighbors to NULL

• vertex<Type>::vertex(const vertex<Type>& copy) - a copy constructor that deep copies the neigh-
bor list of the object passed into the constructor to the object that calls the constructor

• const vertex<Type>& vertex<Type>::operator=(const vertex<Type>& rhs) - assignment opera-
tor, that performs a deep copy of the right side object with the left side object (the object that calls
the operator function)

• vertex<Type>::~vertex() - destructor, deallocates all the nodes in its neighbor list

• typename vertex<Type>::edgeIterator vertex<Type>::begin() - returns a edgeIterator object
whose current will be the head of the neighbor list for the vertex object

• typename vertex<Type>::edgeIterator vertex<Type>::end() - returns a edgeIterator object
whose current will be assigned to NULL

• void vertex<Type>::addEdge(const Type& edge) - adds a new node into the neighbor list (a head
insert would be the best way to implement this)

2

Hash Map Class

You will use a hash to construct your adjacency list since the nodes are not labeled with indices but rather
names (in a string form), thus a hash map is the perfect structure to use here. Once again, you can use STL
unordered_map here, but if your program works with hashMap, you will be awarded extra credit points.

Contents of main

You will be given two input files (one with your edges), each line will contain two room names, separated
by a space, each line is terminated with an end of line. You need to create an undirected graph, i.e. the
following line of input

MainHall WaitingRoom

Means that there is an edge from MainHall to WaitingRoom and from WaitingRoom to MainHall. Since
each door opens from both sides. Thus your structure to maintain your adjacency can be seen below.

• hashMap< string, vertex<string> > map;

• unordered_map< string, vertex<string> > map;

So if you want to add an edge from MainHall to WaitingRoom you would have

map["MainHall"]. addEdge("WaitingRoom");

Since in the hash map, a string maps to a vertex<string>, then map["MainHall"] returns a veretx<string>
object that stores all the neighbors of "MainHall", but in this case it was first found so an empty vertex<string>

object is returned when the new key is added into the hash object. If you want to traverse all the neighbors
of "MainHall" you can have the following code

vertex <string >:: edgeIterator it;

for (it = adjList["MainHall"]. begin (); it != map["MainHall"].end(); it++)

cout << *it << endl; //*it is the name of a neighbor of "MainHall"

The other file you are given contains the rooms that have a key that opens some door in the police station.
Each line contains 3 strings (each separated by a space) and each line is separated by an end of line. The
first string in the line contains which room the key is located in, and the other two strings contain which
door this key opens (i.e. the edge between two nodes), so for example if a line contains

FileStorage MainHall PayphoneCorridor

Then FileStorage contains a key that opens the door that connects MainHall to PayphoneCorridoer and vice
versa. So you would need to add this edge into your graph when a key is found. You will need to do several
DFS traversals to find all the keys and open the doors. If a path can be found to a room called "Exit"

exists then you win and Leon is saved, otherwise...I guess Ada might mourn for Leon. So I used the following
structure to maintain the key locations

hashMap < string , vector <string > > keys;

unordered_map < string , vector <string > > keys;

So for the above example I would have

keys["FileStorage"]. push_back("MainHall");

keys["FileStorage"]. push_back("PayphoneCorridor);

Thus keys["FileStorage"][0] contains "MainHall" and keys["FileStorage"][1] contains "PayphoneCorridor"
so when you arrive at this room, you add the edge (MainHall, PayphoneCorridor) to the graph. Here is the
function that I wrote, this is a DFS traversal that gets called several times in main

3

string running(string curr , hashMap <string , vertex <string > > map ,

hashMap <string , vector <string > > keys , hashMap <string , bool >& visited)

{

}

This function returns a string back, which tells us which room of significance Leon has reached, i.e. if Leon
reached "End" or if Leon reached a room with a key, so when we return back to main, we know which node
to restart DFS from. From main when this function is called, if "" is returned then we know Leon is trapped,
if "Exit" is returned we know Leon escaped, if any other string is returned, you add the edge into the graph
(use the string returned as the string for the keys hash map), and then run this DFS again from the room
where the key was found, so you would have a loop in main that would keep calling this function and pass
a different string into the curr field each time. YOU FIRST START IN THE MAIN HALL

Specifications

• Comment your code and your functions

• Do not add extra class members or remove class members and do not modify the member functions of
the class

• No global variables (global constants are ok)

• Make sure your program is memory leak free

• Extra credit will be awarded if you use hashMap instead of unordered_map for the adjacency list

Sample Run

Your program prompts for the police station map file and the keys file, if Leon can escape you output

"Ok Leon , you escaped the police station , now to find Ada"

If Leon cannot escape then you output

"Ok Leon , your first day will be your last day on the force"

Submission

Submit your source files to code grade by the deadline, you must submit a file called main.cpp, optionally
you can also upload hashMap.hpp if you want to get extra credit

References

• Link to the top image can be found at https : //residentevil.fandom.com/wiki/Nemesis−TT ype/gallery

4

https://residentevil.fandom.com/wiki/Nemesis-T_Type/gallery

