The Second Extended File System

Internal Layout

Dave Poirier

instinc@users.sf.net

The Second Extended File System: Internal Layout
by Dave Poirier

Copyright © 2001-2002 by Dave Poirier

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or
any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license can be acquired electronically from http://www.fsf.org/licenses/fdl.html or by writing to 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Table of Contents

ADOUL ThiS DOOK ... bbb b b e e b sae e nan i
1. DiISK OFQANISALION.......ectiitiiteieeieietesesiesteseee e esesresteseeseesesessesaeseessesteseseesestessesaessensesessesssssensessenensensens 1
O] 1= o] oY S 2
O O~ 10T To 1= TS o0 T) RSSO 3
I 20 T o[T T o 11 1 RSSO 3
1.1.3. S 1 _BIOCKS _COUNL....ccuiieeicire et s s e e nnens 4
1.1.4. S_free_DIOCKS_COUNL........cciiiiiiieieet ettt 4
1.1.5. S_fre@_INOUES_COUNL.....c.ciiiiiriciiiee ettt 4
1.1.6. s_first_data_DIOCK.........oooiiiiiie e 4
1.1.7. S_10Q_BIOCK _SIZE....c.ooiiiieiece et 4
1.1.8. S_10Q_fTaQ_SIZE....ecuiieiieieierie e 4
1.1.9. S_DIOCKS_PEI_gIOUP....ceiiiiirieiirieieriete sttt etttk b e st s b e b e b e snene e 5
1.1.10. S_fragS_PEI_GIOUP....ccceueuerueierieuereetereeteseeresessesessesesaesessebeseebeseeseseebesessenessenesseseseeseseas 5
1.1.11. S INOUES_PEI_gIOUP. . cteueieeeireetereetereetereetesesteesteeseesessebeseebeseebeseebeseebe e sbenesseseseesesea 5
O 2 ST 110110 = ST PSSRN 5
T TR S L 0 TSRS 5
N O = o 0 | A o 1) PR 5
1.2.15. S MaX_ IMNE_COUNL.....cueiiieiieeiteeseesee st see et e e e ste e e e e e e teesaeesreesaeeseesbeesnaeenneereas 6
0 L GRS 1 =T oSO USSTRN 6
N O A = - = RSP RS 6
N IO S = = ¢ (0] £ SR PRR 6
1.1.19. S _MINOT_TEV_IEVEL....iiueeiiceeee ettt e 6
R I O TS = T Cod 1= ot S 6
It O S o 1Tt (T 1 =T V7 | S 7
R = R o = | 0] g 0 = VRSOOSR 7
R I T S oAV 1= = S 7
I S o 1=) (=] U 1o S 7
R T SR o 1= (=T o S 7
O 2 TS 11651 A o YRS 7
O 2 A < 1 To To [7= RS SRRSRSN 8
I 22 S ST o] [Tod Qo[(o 101 o T o (SRS 8
1.1.29. S _fEAtUIE COMPAL......ceciieeeeeeetesese et ettt s s r e e e se e sresbeteneenennens 8
1.1.30. s_feature_INCOMPAL........ccccerieiirere s seseee st e e aesre s e e e e nnens 8
1.1.31. s_feature_r0o_COMPAL........cccrrireiree ettt ettt seebe e 8
O 2~ 1 1o PPN 8
1.1.33. S_VOIUME_NAMIE ...ttt sttt sb et eebe e 8
1.1.34. 5_1aSt_MOUNTEA........coiiiiiriiireeere ettt be e 9
1.1.35. 5_Alg0_DItMAP... ..o bbb 9
R €1 o TU o I B T g o] (o OSSOSO PR 9
1.2.1. bg_BIOCK _DItMEP....ceitiiieee e 10
1.2.2. bg_iNOAe_DitMaP....ccoveiiieiee e 10
2 I o o T T o T L= = L S 10
1.2.4.bg_free DIOCKS COUNL.......ooiiieeieee e e 10
1.2.5. bg_free INOUES _COUNL........cceiiieeieiie ettt 10
1.2.6. bg_USEA_AIrS_COUNL.....ccuiitiieieeetceie et s sa e 10
2 A o T o - To B RPSS 10

1.2.8. DY_TESEIVELL.....ceiieiteietee ettt bbb bbb 10

1.3 BlOCK BIMBP. . ettt bbbt bbb 10
1.4, INOAE BItMAM.ceitiieiiietiieteee et bbbttt bttt n e eb e 11
T g ToTo =T =1 o] =SSP PSR 11
700 O I o o o =P S 12
R T U (o SRS 13
R T T =1 .= PR SRRTRPSRRS 13
T - 1. TSRS 13
T T o 110 = P SRURPSRRS 13
T T 11011 21 PSSR 13
R T o 1] 0 =TSSR 14
8- T o (o SRS 14
e TR 111 ST oo 11 o OSSR 14
0 0 T o] [T < USSR 14

0 It = T TP UPSRS 14
R 700 I T o o [SRR 14
700 1 T oo o3OS 15
0 S o 1= g =T = 4o o R 15
700 L T 11 = T SR 15
700 0 T o [- VSR 16
R0 - Vo [| R 16
700 T o o S 16

1.6, DALA BIOCKS.....ccuiietirietirieteis ettt bbbttt bbbt 18
2. DIFECLONY SEIUCKUIE ...ttt sttt sttt st be bbbt b et b et b et 19
2.1. DIreCtory File FOIMAL........ccooiiirieeiee ettt bbbt 19
20 I T 1 T To [PSSR 19
2,02, FEC BN bbb bbbt b et 19
2.1.30 NAME BN ...ttt bbb e bbb bt b e 19

B R S (1= 1Y o1 OSSOSO PTSTPPRPRPRPRORON 19

A ST 4 =10 1 = USROS URPRRP 20

2.2, SAMPIE DIFBCIOIY....ecueeetirietesietet ettt b et et b et b et b st e e e b e e 20
2.3. Indexed DireCtOry FOIMMAL........cccocoirieirieereee sttt 21
2.3. 1. INAEX STTUCTUIE. ...ttt ettt e sa et e e e e s sbesbeseesee e eneas 22
2.3.2. LOOKUP AlGOITNML.....oiiiie et s e 23
2.3.3. INSEIt AlGOTNIML.....couiiiiie et bbb s e 23
AR T S)11 L] o USSP 24
2.3.5. KEY COllISIONS......eiuiruietieiesie ettt st st bbb e e s besbe b see e eneas 24
2.3.6. HAaSH FUNCLIQN.......ciiiiieie ettt e 24
2.3.7. PeITOIMANCE.ttt et e et s b e b b e e 25

3. IN0dES, file IAENTTIEIS ...t et b e e 27
I 70 I [To o [AN W T] o= ST ST U PP O PR 27
3.2. Locating the IN0AE SLIUCIUIEcvcieeeece et re e 27
3.3. Locating the IN0AE TaBLE........cceieeeece e s e r et 28
O LN 1] o0 (=SOSR 29
) =Y [0 F= U0 N 11] W) (=N 29
4.1.1. SUID, SGID @Nd ~MWXIWXIWX.cveeirerereesreessessreesseessessssssseessessssssssessesssessssssssesssens 29
O 1 == RS 29

4.1.3. OWNET AN GIOUR....cvitirietireeterieteseeteestesess ettt ese s b ss b se s sese s enesbeseseesessesees 29

A o a =Y a0 [0 I AN £ g o1 (=SS 29
4.2.1. Attribute BIOCK HEAAEL..........ceeieieeeeeeee e 30
4.2.2. AHDULE ENrY HEAUEL ..ottt 31

4.3. BEhaVviour CONLIOl FlAgS......c.cociiiiiiieisieeseee ettt 32
4.3.1. EXT2_SECRM_FL - Secure Deletion........cccoiiiieerine e 33
4.3.2. EXT2_UNRM_FL - Record for Undelete.........ccooeveeiiieieieiieececece e 33
4.3.3. EXT2_COMPR_FL - Compressed File.........ccocoiirininenene e 33
4.3.4. EXT2_SYNC_FL - Synchronous Updates..........cccccerererereneneeneeenese e 33
4.3.5. EXT2_IMMUTABLE_FL - Immutable File........ccccoceiiveiineinriseseeseesecsieens 33
4.3.6. EXT2_APPEND_FL - APPENd ONY......ccccvoiiririeirieinieisieeseeeeseesesesssesessessese s 33
4.3.7. EXT2_NODUMP_FL - DO NO DUMP/DEIELE.......ooeireriiriiiriiireesieesisesie s 33
4.3.8. EXT2_NOATIME_FL - Do Not Update .i_atime........ccccoevvrrenrinerriernenieeseenens 34
4.3.9. EXT2_DIRTY _FL = DiltYiucutsicireeiisieiesiecsieesieeseeseseese st sesessesessssessssessesenes 34
4.3.10. EXT2_COMPRBLK_FL - Compressed BIOCKS........cc.cccocvveervnieseir e 34
4.3.11. EXT2_NOCOMPR_FL - Access Raw Compressed Data..........ccccceeceevvreennene 34
4.3.12. EXT2_ECOMPR_FL - COMPresSion EIMOL........cccccviveieriesiereseeseese e see e 34
4.3.13. EXT2_BTREE_FL - B-Tree Format Dir€CtarY.......ccccvvvrerierereereeesereseeseeseeeenes 34
4.3.14. EXT2_INDEX_FL - Hash Indexed Dir€CtOny.......cccoerereresesiesiereeeseseseeseeseeeenes 34
4.3.15. EXT2_IMAGIC_FL 5ttt 35
4.3.16. EXT2_JOURNAL_DATA_FL - Journal File Data..........cccocvvrrvrerriennenecnienenns 35
4.3.17. EXT2_RESERVED_FL - RESEIVEU.......ccoviirieirieirieeees s 35

N 1 (=0 [SR 36

List of Tables

1-1.
1-2.
1-3.
1-4.
1-5.
2-1.
4-1.

EXT2_ERRORS VAIUEBS......ceiiirieieieii ettt se sttt e s aesese e s sansnsanensssnsnsas 6
EXT2_OS VAIUEBS......coeiirerietecisirie e te ettt esas et e e et te s se s tes e e s setesa e st s sesnse e nsssnsnsanessssnsnsns 7
) I (=Y (o TSP 7
EXT2_* INO VAIUES.....c.eeeeieieiiiserieieteiestses et sesas e sse e se st sssessssssesesasesesassesasenssensesessssssnsnsesessnens 12
) I T V7= 111 - 12
L 122l Y- 1[0 S 20
2T T AV o 10 g @] a1 0] I - Vo L= S 32

List of Figures

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
1-8.
2-1.
2-2.
2-3.
3-1.
4-1.
4-2.

floppy disk meta-data [AYOLIL...........coei i 1
20mb partition meta-data [aYOUL..........ccoeiieiriee e 1
SUPEIDIOCK STUCTULE. ...ttt bbbttt eb et 2
(o o T0 o T e [Tt ol LU od 10 = SRS 9
1 o0 (SIS 10 od (1 [= R 11
[T ToTe (SN0 Fo P2ARS] (N [ox (0TIl = [V R 16
(1o Yo (SN0 rsTo P2aRS] (N o (0Tt N 1 G 17
INOAE OS2 SIIUCTUIE: IMASDC......ciueiiitiieiee ettt sttt b e bbbt e sbe st bese e 18
Lo [T =Tox (0] VA= 11 YRS 19
Sample DireCtory Data LAYQUL...........ccecviierierecieseee ettt tesre e e snesnnennens 20
Performance of INdeXed DIFECIOMES........couriiirire ettt 25
Sample iNOde COMPULALIANS........cccueiiieeee et a e s e e e s tesse e tesreeneesaeenneseeas 27
eXt2_Xattr_Neader SITUCTUI........oc et e e st e e e e sneennenneas 30
eXt2_Xattr_Neader SITUCIUIE........oc et te st e e e e saesnneneens 31

About this book

The latest version of this document may be downloaded from http://www.freesoftware.fsf.org/ext2-doc/

This book is intended as an introduction and guide to the Second Extended File System, also known as
Ext2. The reader should have a good understanding of the purpose of a file system as well as the
associated vocabulary (file, directory, partition, etc).

Trying to implement ext2 drivers isn't always an easy task, the most difficult issue is unfortunately the
documentation available. It seems like most of the documentation on the net about the internal layout of
Ext2 was written to complement the Linux sources rather than be a complete document by themselves.

Hopefully this document will fix this problem, may it be of help to as many of you as possible.

Unless otherwise stated, all values are stored in little endian byte order.

Chapter 1. Disk Organisation

The first aspect of using the Second Extended File System one has to grasp is that all the meta-data
structures size are based on a “block” size rather than a “sector” size. This block size is variable
depending on the size of the file system. On a floppy disk for example, it is 1KB (2 sectors), while on a
10GB partition, the block size is normally 4KB or 8KB (8 and 16 sectors respectively).

Each block is further sub-divided into "fragments", but | have yet to see a file system which fragment
size doesn’t match block size. Although my guts tells me that there must be some folks out there using
different sizes for fragments and blocks.

Except for the superblock, all meta-data structures are resized to fit into blocks. This is something to
remember when trying to mount any other file system than one on a floppy. The “Inode Table Block” for
example will contain more entries in a 4KB block than in a 1KB block, so one will have to take that into
account when accessing this particular structure.

The next major aspect is that the file system is split into “block groups”. While a floppy would contain
only one block group holding all the blocks of the file system, a hard disk of 10GB could easily be split
into 30 of such block groups; each holding a certain quantity of blocks.

At the start of each block group are various meta-data structures detailing the location of the other, more
informative, meta-data structures defining the current file system state. Here’s the organisation of an ext2
file system on a floppy:

Figure 1-1. floppy disk meta-data layout

offset # of blocks description

0 1 boot record
-- block group 0 --
(1024 bytes) 1 superblock
2 1 group descriptors
3 1 block bitmap
4 1 inode bitmap
5 23 inode table
28 1412 data blocks

And here’s the organisation of a 20MB ext2 file system:

Figure 1-2. 20mb partition meta-data layout

offset # of blocks description

0 1 boot record
-- block group 0 --

Chapter 1. Disk Organisation

(1024 bytes) 1 superblock
2 1 group descriptors
3 1 block bitmap
4 1 inode bitmap
5 214 inode table
219 7974 data blocks
-- block group 1 --
8193 1 superblock backup
8194 1 group descriptors backup
8195 1 block bitmap
8196 1 inode bitmap
8197 214 inode table
8408 7974 data blocks
-- block group 2 --
16385 1 block bitmap
16386 1 inode bitmap
16387 214 inode table
16601 3879 data blocks

The layout on disk is very predictable as long as you know a few basic information; block size, blocks
per group, inodes per group. This information is all located in, or can be computed from, the superblock
structure.

Without the superblock information, the disk is useless; therefore as soon as enough space is available,
one or more superblock backups will be created on the disk.

The block bitmap and inode bitmap are used to identify which blocks and which inode entries are free to
use. The data blocks is where the various files will be stored. Note that a directory is also seen as a file
under Ext2, we will go in more detail about that later on.

While all ext2 implementations try to be compatible, some fields in the various structures have been
customized to fit the requirements of a specific operating system. Where such differences are known, they
will be indicated in proper time.

1.1. superblock

The superblock is the structure on an ext2 disk containing the very basic information about the file
system properties. It is layed out in the following form:

Figure 1-3. superblock structure

offset size description
0 4 s_inodes_count
4 4 s_blocks_count

s_r_blocks_count
s_free_blocks_count
s_free_inodes_count
s_first_data_block
s_log_block_size
s_log_frag_size
s_blocks_per_group
s_frags_per_group
s_inodes_per_group
s_mtime

s_wtime
s_mnt_count
S_max_mnt_count
S_magic

s_state

s_errors
s_minor_rev_level
s_lastcheck
s_checkinterval
s_creator_os
s_rev_level
s_def_resuid
s_def_resgid

- EXT2_DYNAMIC_REV Specific --

s_first_ino
s_inode_size
s_block_group_nr
s_feature_compat
s_feature_incompat
s_feature_ro_compat
s_uuid
s_volume_name
s_last_mounted
s_algo_bitmap

Hints --
s_prealloc_blocks
s_prealloc_dir_blocks
- (alignment)

-- Journaling Support --

8 4
12 4
16 4
20 4
24 4
28 4
32 4
36 4
40 4
44 4
48 4
52 2
54 2
56 2
58 2
60 2
62 2
64 4
68 4
72 4
76 4
80 2
82 2
84 4
88 2
90 2
92 4
96 4

100 4
104 16
120 16
136 64
200 4
-- Performance
204 1
205 1
206 2
208 16
224 4
228 4
232 4
-- Unused
236

s_journal_uuid
s_journal_inum
s_journal_dev
s_last_orphan

788 - (padding)

1.1.1. s _inodes_count

Chapter 1. Disk Organisation

32bit value indicating the total number of inodes, both used and free, in the file system.

1.1.2.

1.1.3.

1.1.4.

1.1.5.

1.1.6.

1.1.7.

Chapter 1. Disk Organisation

s_blocks_count

32bit value indicating the total number of blocks, both used and free, in the file system.

s_r_blocks count

32bit value indicating the total number of blocks reserved for the usage of the super user. This is most
useful if for some reason a user, maliciously or not, fill the file system to capacity; the super user will
have this specified amount of free blocks at his disposal so he can edit and save configuration files.

s_free_blocks _count

32bit value indicating the total number of free blocks, including the number of reserved blocks (see
s_r_blocks_coumt This is a sum of all free blocks of all the block groups.

s_free_inodes_count

32bit value indicating the total number of free inodes. This is a sum of all free inodes of all the block
groups.

s_first_data_block

32bit value identifying the first data block, in other word the id of the block containing the superblock
structure.

Note that this value is always 0 for file systems with a block size larger than 1KB, and always 1 for file
systems with a block size of 1KB. The superblockliwaysstarting at the 1024th byte of the disk, which
normally happens to be the first byte of the 3rd sector.

s_log_block_size

The block size is computed using this 32bit value as the number of bits to shift left the value 1024. This
value may only be positive.

block size = 1024 << s_log_block_size;

Chapter 1. Disk Organisation

1.1.8. s _log_frag_size

The fragment size is computed using this 32bit value as the number of bits to shift left the value 1024.
Note that a negative value would shift the bit right rather than left.

if(positive)
fragmnet size = 1024 << s_log_frag_size;
else
framgnet size

1024 >> -s_log_frag_size;

1.1.9. s _blocks_per_group

1.1.10.

1.1.11.

1.1.12.

1.1.13.

32bit value indicating the total number of blocks per group. This value in combination with
s_first_data_blockan be used to determine the block groups boundaries.

s_frags_per_group

32bit value indicating the total number of fragments per group. It is also used to determine the size of the
block bitmap of each block group.

S_inodes_per_group

32bit value indicating the total number of inodes per group. This is also used to determine the size of the
inode bitmap of each block group.

S_mtime
Unix time, as defined by POSIX, of the last time the file system was mounted.
S_wtime

Unix time, as defined by POSIX, of the last write access to the file system.

1.1.14.

1.1.15.

1.1.16.

1.1.17.

1.1.18.

1.1.19.

Chapter 1. Disk Organisation

s_mnt_count

32bit value indicating how many time the file system was mounted since the last time it was fully
verified.

S_max_mnt_count

32bit value indicating the maximum number of times that the file system may be mounted before a full
check is performed.

S_magic

16bit value identifying the file system as Ext2. The value is currently fix@tEG53 .

s_state

16bit value indicating the file system state. When the file system is mounted, this state is set to
EXT2_ERROR_FSWhen the file system is not yet mounted, this value may be eitk&_VALID_FS or
EXT2_ERROR_Fn the event the file system was not cleanly unmounted.

S_errors

16bit value indicating what the file system driver should do when an error is detected. The following
values have been defined:

Table 1-1. EXT2_ERRORS values

EXT2_ERRORS_CONTINUE 1 continue as if nothing happened
EXT2_ERRORS_RO 2 remount read-only
EXT2_ERRORS_PANIC 3 cause a kernel panic
EXT2_ERRORS_DEFAULT varies as of revision 0.5, this is the same as

EXT2_ERRORS_CONTINUE

S_minor_rev_level

16bit value identifying the minor revision level within itsvision level

1.1.20.

1.1.21.

1.1.22.

1.1.23.

1.1.24.

1.1.25.

Chapter 1. Disk Organisation

s_lastcheck

Unix time, as defined by POSIX, of the last file system check.

s_checkinterval

Maximum Unix time interval, as defined by POSIX, allowed between file system checks.

s_creator_os

32bit identifier of the os that created the file system. Defined values are:

Table 1-2. EXT2_OS values

EXT2_OS_LINUX 0 Linux
EXT2_OS_HURD 1 Hurd
EXT2_0OS_MASIX 2 MASIX
EXT2_0OS_FREEBSD 3 FreeBSD
EXT2_OS_LITES4 4 Lites
s_rev_level

32bit revision level value. There are currently only 2 values defined:

Table 1-3. EXT2 revisions

EXT2_GOOD_OLD_REV 0 original format
EXT2_DYNAMIC_REV 1 V2 format with dynamic inode sizes
s_def resuid

16bit value used as the default user id for reserved blocks.

s_def resgid

16bit value used as the default group id for reserved blocks.

1.1.26

1.1.27.

1.1.28.

1.1.29.

1.1.30.

1.1.31.

1.1.32.

Chapter 1. Disk Organisation

s_first_ino

32bit value used as index to the first inode useable for standard files. In the non-dynamic file system
revisions, the first non-reserved inode was fixedoWith the introduction the dynamic revision of the
file system it is now possible to modify this value.

s_inode_size

16bit value indicating the size of the inode structure. In non-dynamic file system revisions this value is
assumed to be2s.

s_block _group_nr

16bit value used to indicate the block group number hosting this superblock structure. This can be used
to rebuild the file system from any superblock backup.

s_feature_compat

32bit bitmask of compatible features. The file system implementation is free to support them or not
without risk of damaging the meta-data. (more information will be added soon)

s_feature_incompat

32bit bitmask of incompatible features. The file system implementation should refuse to mount the file
system if any of the indicated feature is unsupported. (more information will be added soon)

s_feature_ro_compat

32bit bitmask of “read-only” features. The file system implementation should mount as read-only if any
of the indicated feature is unsupported. (more information will be added soon)

S_uuid

128bit value used as the volume id. This should, as much as possible, be unique for each file system
formatted.

Chapter 1. Disk Organisation

1.1.33. s_volume_name

16 bytes volume name, mostly unusued. A valid volume name would consist of only ISO-Latin-1
characters and be 0 terminated.

1.1.34. s _last_mounted

64 bytes directory path where the file system was last mounted. While not normally used, it could serve
for auto-finding the mountpoint when not indicated on the command line. Again the path should be zero
terminated for compatibility reasons. Valid path is constructed from ISO-Latin-1 characters.

1.1.35. s_algo_bitmap

32bit value used by compression algorithms to determine the methods used. (I do not have any more
detail about this field, if you do please do send me all the information you have, thanks).

1.2. Group Descriptor

The group descriptors is an array of the group_desc structure, each describing a “block group”, giving
the location of its inode table, blocks and inodes bitmaps, and some other useful informations.

The group descriptors are located on the first block following the block containing the superblock
structure. Here’s what one of the group descriptor looks like:

Figure 1-4. group_desc structure

offset size description
0 4 bg_block_bitmap
4 4 bg_inode_bitmap
8 4 bg_inode_table
12 2 bg_free_blocks_count
14 2 bg_free_inodes_count
16 2 bg_used_dirs_count
18 2 bg_pad
20 12 bg_reserved

For each group in the file system, such a group_desc is created. Each represent a single “block group
within the file system and the information within any one of them is pertinent only to the group it is
describing. Every “Group Descriptor Table” contains all the information about all the groups.

1.2.1.

1.2.2.

1.2.3.

1.2.4.

1.2.5.

1.2.6.

1.2.7.

1.2.8.

Chapter 1. Disk Organisation

All indicated “block id” are absolute.

bg_block bitmap

32bit block id of the first block of thelflock bitmag for the group represented.

bg_inode_bitmap

32bit block id of the first block of theifiode bitmap for the group represented.

bg_inode_table

32bit block id of the first block of theifiode tablé for the group represented.

bg_free blocks count

16bit value indicating the total number of free blocks for the represented group.

bg free_inodes_count

16bit value indicating the total number of free inodes for the represented group.

bg used_dirs_count

16bit value indicating the number of inodes allocated to directories for the represented group.

bg pad

16bit value used for padding the structure on a 32bit boundary.

bg_reserved

3 successive 32bit values reserved for future implementations.

10

Chapter 1. Disk Organisation

1.3. Block Bitmap

The “Block Bitmap” is normally located at the first block, or second block if a superblock backup is
present, of the block group. Its official location can be determined by readindgpghélock_bitmapin
its associatedroup descriptar

Each bit represent the current state of a block within that group, where 1 means “used” and 0
“free/available”. The first block of this block group is represented by bit 0 of byte 0, the second by bit 1
of byte 0. The 8th block is represented by bit 7 (most significant bit) of byte 0 while the 9th block is
represented by bit O (least significant bit) of byte 1.

1.4. Inode Bitmap

The “Inode Bitmap” works in a similar way as th8lbck Bitmag', difference being in each bit
representing an inode in thénbde Tablé rather than a block.

There is one inode bitmap per group and its location may be determined by reading the
“bg_inode_bitmapin its associatedjyroup descriptor

When the inode table is created, all the reserved inodes are marked as used. For the “Good Old Revision”
this means the first 11 bits of the inode bitmap.

1.5. Inode Table

The “Inode Table” is used to keep track of every file; their location, size, type and access rights are all
stored in inodes. The filename is not stored in there though, within the inode tables all files are refenced
by their inode number.

There is one inode table per group and it can be located by readinggh@tde_tablein its associated
group descriptorThere ares_inodes_per_groupodes per table.

Each inode contain the information about a single physical file on the system. A file can be a directory, a
socket, a buffer, character or block device, symbolic link or a regular file. So an inode can be seen as a
block of information related to an entity, describing its location on disk, its size and its owner. An inode
looks like this:

Figure 1-5. inode structure

offset size description

0 2 i_mode

11

Chapter 1. Disk Organisation

2 2 i_uid

4 4 i_size

8 4 i_atime

12 4 i _ctime

16 4 i_mtime

20 4 i_dtime

24 2 i_gid

26 2 i_links_count
28 4 i_blocks

32 4 i_flags

36 4 i _osdl

40 15 x 4 i_block
100 4 i_generation
104 4 i file_acl
108 4 i_dir_acl
112 4 i_faddr
116 12 i_osd2

The first few entries of the inode tables are reserved. In the EXT2_GOOD_OLD_REV there are 11
entries reserved while in the newer EXT2_DYNAMIC_REYV the number of reserved inodes entries is
specified in thes_first_inoof the superblock structure. Here’s a listing of the known reserved inode
entries:

Table 1-4. EXT2_*_INO values

EXT2_BAD_INO 0x01 bad blocks inode

EXT2_ROOT_INO 0x02 root directory inode

EXT2_ACL_IDX_INO 0x03 ACL index inode (deprecated?)

EXT2_ACL_DATA INO 0x04 ACL data inode (deprecated?)

EXT2_BOOT_LOADER_INO 0x05 boot loader inode

EXT2_UNDEL_DIR_INO 0x06 undelete directory inode
1.5.1.i_mode

16bit value used to indicate the format of the described file and the access rights. Here are the possible
values, which can be combined in various ways:

Table 1-5. EXT2_S | values

-- file format --
EXT2_S IFMT 0xF000 format mask
EXT2_S_IFSOCK 0xC000 socket
EXT2_S_IFLNK 0xA000 symbolic link
EXT2_S_IFREG 0x8000 regular file
EXT2_S IFBLK 0x6000 block device

12

Chapter 1. Disk Organisation

EXT2_S IFDIR 0x4000 directory
EXT2_S IFCHR 0x2000 character device
EXT2_S_IFIFO 0x1000 fifo
-- access rights --
EXT2_S_ISUID 0x0800 SuID
EXT2_S_ISGID 0x0400 SGID
EXT2_S ISVTX 0x0200 sticky bit
EXT2_S IRWXU 0x01CO0 user access rights mask
EXT2_S_IRUSR 0x0100 read
EXT2_S_IWUSR 0x0080 write
EXT2_S IXUSR 0x0040 execute
EXT2_S IRWXG 0x0038 group access rights mask
EXT2_S IRGRP 0x0020 read
EXT2_S IWGRP 0x0010 write
EXT2_S_IXGRP 0x0008 execute
EXT2_S IRWXO 0x0007 others access rights mask
EXT2_S_IROTH 0x0004 read
EXT2_S IWOTH 0x0002 write
EXT2_S_IXOTH 0x0001 execute
1.5.2.1 uid

16bit user id associated with the file.

1.5.3.i_size

32bit value indicating the size of the file in bytes.

1.5.4.i atime
32bit value representing the number of seconds since january 1st 1970 of the last time this file was
accessed.

1.5.5.i_ctime

32bit value representing the number of seconds since january 1st 1970 when the file was created.

13

Chapter 1. Disk Organisation

1.5.6. i_mtime

32bit value representing the number of seconds since january 1st 1970 of the last time this file was
modified.

1.5.7.1 _dtime

32bit value representing the number of seconds since january 1st 1970 when the file was deleted. It is
important that unless the file is deleted that this value is always 0.

1.5.8.1 _gid

16bit value of the group having access to this file.

1.5.9.i_links_count

1.5.10.

1.5.11.

1.5.12.

16bit value indicating how many times this particular inode is linked (referred to).

I_blocks

32bit value indicating the amount of blocks reserved for the associated file data. This includes both
currently in used and currently reserved blocks in case the file grows in size.

A point worth of note is that this value indicate the number of 512 bytes block and not the nhumber of
blocks of the size indicated in the superblock. So if a file uses only 1 file system block and is 1024 bytes
big, its .i_blocks value will be 2.

I_flags

32bit value indicating how the ext2 implementation should behave when accessing the data for this
inode. (See th8ehaviour flagsection.)

I_osdl

32bit OS dependant value.

14

1.5.13.

1.5.14.

Chapter 1. Disk Organisation

1.5.12.1. Hurd

32bit value labeled as “translator”.

1.5.12.2. Linux

32bit value currently reserved.

1.5.12.3. Masix

32bit value currently reserved.

I_block

Array used to locate the blocks the particular file is stored on. Each entry is a 32bit block number. The
first 12 entries in this array are block numbers, which can be used to fetch the first 12 blocks associated
with the file.

The 13th entry is an indirect block number. Which means that at the specified data block, you will find an
array of direct block numbers.

The 14th entry is an bi-indirect block number. Which means that at the specified data block, you will find
an array of indirect block number, which in turn contains an array of block numbers that can be accessed
directly.

The 15th entry is an tri-indirect block number. It is a block number which contains an array of bi-indirect
block number, etc.

Each indirect/bi-indirect/tri-indirect block array contains as many entries of 32bit block numbers as
possible (to fill one entire block).

I_generation

32bit value used to indicate the file version (used by NFS).

15

1.5.15.

1.5.16.

1.5.17.

1.5.18.

Chapter 1. Disk Organisation

I_file_acl

32bit value indicating the block number containing the extended attributes. In previous revisions this
value was always 0.

A general description of ACL for Digital UNIX can be found at this url for the moment:
http://www.tru64unix.compag.com/docs/base_doc/DOCUMENTATION/HTML/AA-QOR2D-
TET1_html/sec.c27.html

I_dir_acl

32bit value used to indicate the “high size” of the file. In previous revisions this value was always 0.

I_faddr

32bit value indicating the location of the last file fragment.

I_0sd2
96bit OS dependant structure.

1.5.18.1. Hurd

Figure 1-6. inode osd2 structure: Hurd

offset size description
0 1 h_i_frag
1 1 h_i fsize
2 2 h_i_mode_high
4 2 h_i_uid_high
6 2 h_i_gid_high
8 4 h_i_author

1.5.18.1.1. h_i_frag

8hit fragment number.

16

Chapter 1. Disk Organisation

1.5.18.1.2. h_i_fsize

8bit fragment size.

1.5.18.1.3. h_i_mode_high

1.5.18.1.4. h_i_uid_high

High 16bit ofuser id

1.5.18.1.5. h_i_gid_high

High 16bit ofgroup id

1.5.18.1.6. h_i_author

1.5.18.2. Linux

Figure 1-7. inode osd2 structure: Linux

offset size description
0 1 i frag
1 1 Li_fsize
2 2 reserved
4 2 |_i_uid_high
6 2 |_i_gid_high
8 4 reserved

1.5.18.2.1. 1 i frag

8hit fragment number.

1.5.18.2.2. |_i_fsize

8hit fragment size.

17

Chapter 1. Disk Organisation

1.5.18.2.3. |_i_uid_high

High 16bit ofuser id

1.5.18.2.4.1_i_gid_high

High 16bit ofgroup id

1.5.18.3. Masix

Figure 1-8. inode 0sd2 structure: Masix

offset size description
0 1 m_i_frag
1 1 m_i_fsize
2 10 reserved

1.5.18.3.1. m_i_frag
8bit fragment number.
1.5.18.3.2. m_i_fsize

8bit fragment size.

1.6. Data Blocks

Data blocks are used to store the various files’ content, including directory listing, extended attributes,
symbolic links, etc.

18

Chapter 2. Directory Structure

Directories are stored as files and can be identified as such by looking agtthénode.i_mode
file format bits for theEXT2_S_IFDIR value.

The root directory is always the second entry of the inode taXgZ ROOT_INGis of value 2). Any
subdirectory from there can be located by looking at the content of the root directory file.

2.1. Directory File Format

Figure 2-1. directory entry

offset size description

inode
rec_len
name_len
file_type
name

o ~NoONO
R RN

Earlier implementations of Ext2 used a 16téme_len , but since this value is stored in Intel
(little-endian) byte order and most implementation restricted filenames to maximum 255 characters,
allowing a byte to be recycled.

2.1.1. inode

32bit inode number of the file entry. A value of 0 indicate that the entry is not used.

2.1.2. rec_len

16bit unsigned displacement to the next directory entry from the start of the current directory entry.

2.1.3. name_len

8bit unsigned value indicating how many characters are contained in the name.

19

Chapter 2. Directory Structure

2.1.4. file_type

8bit unsigned value used to indicate file type. As noted, this value may be 0 in earlier implementations.
Currently defined values are:

Table 2-1. EXT2_FT values

EXT2_FT_UNKNOWN
EXT2_FT_REG_FILE
EXT2_FT_DIR
EXT2_FT_CHRDEV
EXT2_FT_BLKDEV
EXT2_FT_FIFO
EXT2_FT_SOCK
EXT2_FT_SYMLINK
EXT2_FT_MAX

© N g o P wdN R O

2.1.5. name

Name of the entry. The allowed character set is the ISO-Latin-1.

2.2. Sample Directory

Here’s a sample of the home directory of one user on my system:
$ Is -1la /home/eks

.bash_profile

.bashrc

mbox

public_html
tmp

For which the following data representation can be found on the storage device:

Figure 2-2. Sample Directory Data Layout

offset size description

0 4 inode number (783362)

20

Chapter 2. Directory Structure

4 2 record length (9)

6 1 name length (1)

7 1 file type (EXT2_FT_DIR)

8 1 name (.)

9 4 inode number (1109761)

13 2 record length (10)

15 1 name length (2)

16 1 file type (EXT2_FT_DIR)

17 2 name (..)

19 4 inode number (783364)

23 2 record length (21)

25 1 name length (13)

26 1 file type (EXT2_FT_REG_FILE)
27 13 name (.bash_profile)

40 4 inode number (783363)

44 2 record length (15)

46 1 name length (7)

47 1 file type (EXT2_FT_REG_FILE)
48 7 name (.bashrc)

55 4 inode number (783377)

59 2 record length (12)

61 1 name length (4)

62 1 file type (EXT2_FT_REG_FILE)
63 4 name (mbox)

67 4 inode number (783545)

71 2 record length (19)

73 1 name length (11)

74 1 file type (EXT2_FT_DIR)

75 11 name (public_html)

86 4 inode number (669354)

90 2 record length (11)

92 1 name length (3)

93 1 file type (EXT2_FT_DIR)

94 3 name (tmp)

97 4 inode number (0)

101 2 record length (3999)

103 1 name length (0)

104 1 file type (EXT2_FT_UNKNOWN)
105 0 name ()

It should be noted that some implementation will pad directory entries to have better performances on
the host processor, it is thus important to userdwrd length and not thename length to find
the next record.

21

Chapter 2. Directory Structure

2.3. Indexed Directory Format

Using the standard linked list directory format can become very slow once the number of files starts
growing. To improve performances in such a system, a hashed index was created, which allow to quickly
locate the particular file searched.

Bit EXT2_INDEX_FL in thebehaviour control flags set if the indexed directory format is used.

2.3.1. Index Structure

The root of the index tree is in the Oth block of the file. Space is reserved for a second level of the index
tree in blocks 1 though 511 (for 4K filesystem blocks). Directory leaf blocks are appended starting at
block 512, thus the tail of the directory file looks like a normal Ext2 directory and can be processed
directly by ext2_readdir. For directories with less than about 90K files there is a hole running from block
1 to block 511, so an empty directory has just two blocks in it, though its size appears to be about 2 Meg
in a directory listing.

So a directory file looks like:

0: Root index block
1. Index block/0
2: Index block/O

511: Index block/O
512: Dirent block
513: Dirent block

Each index block consists of 512 index entries of the form:

hash, block

where hash is a 32 bit hash with a collision flag in its least significant bit, and block is the logical block
number of an index of leaf block, depending on the tree level.

The hash value of the Oth index entry isn’t needed because it can always be obtained from the level
about, so it is used to record the count of index entries in an index block. This gives a nice round
branching factor of 512, the evenness being a nicety that mainly satisfies my need to seek regularity,
rather than winning any real performance. (On the other hand, the largeness of the branching factor
matters a great deal.)

22

Chapter 2. Directory Structure

The root index block has the same format as the other index blocks, with its first 8 bytes reserved for a
small header:

1 byte header length (default: 8)
1 byte index type (default: 0)

1 byte hash version (default:0)
1 byte tree depth (default: 1)

The treatment of the header differs slightly in the attached patch. In particular, only a single level of the
index tree (the root) is implemented here. This turns out to be sufficient to handle more than 90,000
entries, so it is enough for today. When a second level is added to the tree, capacity will incease to
somewhere around 50 million entries, and there is nothing preventing the use of n levels, should there
ever be a reason. It's doubtfull that a third level will ever be required, but if it is, the design provides for it.

2.3.2. Lookup Algorithm

Lookup is straightforword:

- Compute a hash of the name

- Read the index root

- Use binary search (linear in the current code) to find the
first index or leaf block that could contain the target hash
(in tree order)

- Repeat the above until the lowest tree level is reached

- Read the leaf directory entry block and do a normal Ext2
directory block search in it.

- If the name is found, return its directory entry and buffer

- Otherwise, if the collision bit of the next directory entry is
set, continue searching in the successor block

Normally, two logical blocks of the file will need to be accessed, and one or two metadata index blocks.
The effect of the metadata index blocks can largely be ignored in terms of disk access time since these
blocks are unlikely to be evicted from cache. There is some small CPU cost that can be addressed by
moving the whole directory into the page cache.

2.3.3. Insert Algorithm

Insertion of new entries into the directory is considerably more complex than lookup, due to the need to
split leaf blocks when they become full, and to satisfy the conditions that allow hash key collisions to be
handled reliably and efficiently. I'll just summarize here:

- Probe the index as for lookup
- If the target leaf block is full, split it and note the block
that will receive the new entry

23

Chapter 2. Directory Structure

- Insert the new entry in the leaf block using the normal Ext2
directory entry insertion code.

The details of splitting and hash collision handling are somewhat messy, but | will be happy to dwell on
them at length if anyone is interested.

2.3.4. Splitting

In brief, when a leaf node fills up and we want to put a new entry into it the leaf has to be split, and its
share of the hash space has to be partitioned. The most straightforward way to do this is to sort the entrys
by hash value and split somewhere in the middle of the sorted list. This operation is

log(number_of entries_in_leaf) and is not a great cost so long as an efficient sorter is used. | used
Combsort for this, although Quicksort would have been just as good in this case since average case
performance is more important than worst case.

An alternative approach would be just to guess a median value for the hash key, and the partition could
be done in linear time, but the resulting poorer partitioning of hash key space outweighs the small
advantage of the linear partition algorithm. In any event, the number of entries needing sorting is
bounded by the number that fit in a leaf.

2.3.5. Key Collisions

Some complexity is introduced by the need to handle sequences of hash key collisions. It is desireable to
avoid splitting such sequences between blocks, so the split point of a block is adjusted with this in mind.
But the possibility still remains that if the block fills up with identically-hashed entries, the sequence

may still have to be split. This situation is flagged by placing a 1 in the low bit of the index entry that
points at the sucessor block, which is naturally interpreted by the index probe as an intermediate value
without any special coding. Thus, handling the collision problem imposes no real processing overhead,
just come extra code and a slight reduction in the hash key space. The hash key space remains sufficient
for any conceivable number of directory entries, up into the billions.

2.3.6. Hash Function

The exact properties of the hash function critically affect the performance of this indexing strategy, as |
learned by trying a number of poor hash functions, at times intentionally. A poor hash function will

result in many collisions or poor partitioning of the hash space. To illustrate why the latter is a problem,
consider what happens when a block is split such that it covers just a few distinct hash values. The
probability of later index entries hashing into the same, small hash space is very small. In practice, once
a block is split, if its hash space is too small it tends to stay half full forever, an effect | observed in
practice.

24

Chapter 2. Directory Structure

After some experimentation | came up with a hash function that gives reasonably good dispersal of hash
keys across the entire 31 bit key space. This improved the average fullness of leaf blocks considerably,
getting much closer to the theoretical average of 3/4 full.

But the current hash function is just a place holder, waiting for an better version based on some solid
theory. | currently favor the idea of using crc32 as the default hash function, but | welcome suggestions.

Inevitably, no matter how good a hash function | come up with, somebody will come up with a better one
later. For this reason the design allows for additional hash functiones to be added, with backward
compatibility. This is accomplished simply, by including a hash function number in the index root. If a
new, improved hash function is added, all the previous versions remain available, and previously created
indexes remain readable.

Of course, the best strategy is to have a good hash function right from the beginning. The initial, quick
hack has produced results that certainly have not been disappointing.

2.3.7. Performance

OK, if you have read this far then this is no doubt the part you've been waiting for. In short, the
performance improvement over normal Ext2 has been stunning. With very small directories performance
is similar to standard Ext2, but as directory size increases standard Ext2 quickly blows up quadratically,
while htree-enhanced Ext2 continues to scale linearly.

Uli Luckas ran benchmarks for file creation in various sizes of directories ranging from 10,000 to 90,000
files. The results are pleasing: total file creation time stays very close to linear, versus quadratic increase
with normal Ext2.

Time to create:

Figure 2-3. Performance of Indexed Directories

Indexed Normal

10000 Files: Om1.350s 0m23.670s
20000 Files: 0m2.720s 1m20.470s
30000 Files: 0m4.330s 3m9.320s
40000 Files: 0m5.890s 5m48.750s
50000 Files: 0m7.040s 9m31.270s
60000 Files: Om8.610s 13m52.250s
70000 Files: 0m9.980s 19m24.070s
80000 Files: 0m12.060s 25m36.730s
90000 Files: 0m13.400s 33m18.550s

25

Chapter 2. Directory Structure

A graph is posted at: http://www.innominate.org/~phillips/htree/performance.png

All of these tests are CPU-bound, which may come as a surprise. The directories fit easily in cache, and
the limiting factor in the case of standard Ext2 is the looking up of directory blocks in buffer cache, and
the low level scan of directory entries. In the case of htree indexing there are a number of costs to be
considered, all of them pretty well bounded. Notwithstanding, there are a few obvious optimizations to
be done:

- Use binary search instead of linear search in the interior index
nodes.

- If there is only one leaf block in a directory, bypass the index
probe, go straight to the block.

- Map the directory into the page cache instead of the buffer cache.

Each of these optimizations will produce a noticeable improvement in performance, but naturally it will
never be anything like the big jump going from N**2 to Log512(N), ~= N. In time the optimizations will
be applied and we can expect to see another doubling or so in performance.

There will be a very slight performance hit when the directory gets big enough to need a second level.
Because of caching this will be very small. Traversing the directories metadata index blocks will be a
bigger cost, and once again, this cost can be reduced by moving the directory blocks into the page cache.

Typically, we will traverse 3 blocks to read or write a directory entry, and that number increases to 4-5
with really huge directories. But this is really nothing compared to normal Ext2, which traverses several
hundred blocks in the same situation.

26

Chapter 3. Inodes, file identifiers

Every file, directory, symlink, special device, or anything else really stored in a ext2 file system, is
identified by an inode. If you know the inode number of the file you want to read, even if you don’t know
the path to the file or even the file name, you can still locate the file on disk and read it.

3.1. Inode Number

The “inode number” is an index in theode tablego aninodestructure. The size of the inode table is

fixed at format time, it is built to hold a maximum number of entries. Due to the normally sufficiently
large amount of entries reserved, the table is quite big and thus, it was split equally among all the “block
groups” (seeChapter Ifor more information).

3.2. Locating the Inode structure

Thes_inodes_per_groujeld in thesuperbloclstructure tells us how many inodes are defined per group.
Knowing that inode 1 is the first inode defined in the inode table, one can use the following formulaes:

group = (inode - 1) / s_inodes_per_group

to locate which blocks group holds the part of the inode table containing the searched inode entry, and:

index = (inode - 1) % s_inodes_per_group

to get the index within this partial inode table to the searched inode entry. Here are a couple of sample
values that could be used to test your implementation:

Figure 3-1. Sample inode computations
s_inodes_per_group = 1712

inode number computation

1 group = (1 - 1) / 1712 = 0O
index = (1 - 1) % 1712 = 0

2 group = (2 - 1) / 1712 = 0
index = (2 - 1) % 1712 = 1

963 group = (963 - 1) / 1712 = 0
index = (963 - 1) % 1712 = 962

27

Chapter 3. Inodes, file identifiers

1712 group = (1712 - 1) / 1712 = 0
index = (1712 - 1) % 1712 = 1711
1713 group = (1713 - 1) / 1712 = 1
index = (1713 - 1) % 1712 = 0
3424 group = (3424 - 1) / 1712 = 1
index = (3424 - 1) % 1712 = 1711
3425 group = (3425 - 1) / 1712 = 2
index = (3425 - 1) % 1712 = 0

As many of you are most likely already familiar with, an index of 0 means the first entry. The reason
behind using 0 rather than 1 is that it can more easily be multiplied by the structure size to find the final
offset of its location in memory or on disk.

3.3. Locating the Inode Table

As introduced irSection 3.1the inode table is split equally among all group. If a file system was created
to allow a thousand inodes, split between 5 groups, there would be 200 inodes per partial inode table.
Figure 3-lillustrates such similar distribution.

Each partial inode table can be located usingatyeinode_tabléeld of thegroup_descriptostructure
of its associated blocks group.

28

Chapter 4. File Attributes

Most of the file (also directory, symlink, device...) attributes are located imtideassociated with the
file. Some other attributes are only available as extended attributes.

4.1. Standard Attributes

4.1.1. SUID, SGID and -rwxrwxrwx

There isn’t much to say about those, they are located with the SGID and SUID bk®irinode.i_mode

4.1.2. File Size

The size of a file can be determined by looking atékt?_inode.i_sizéeld.

4.1.3. Owner and Group

Under most implementations, the owner and group are 16bit values, but on some recent Linux and Hurd
implementations the owner and group id are 32bit. When 16bit values are used, only the “low” part
should be used as valid, while when using 32bit value, both the “low” and “high” part should be used,
the high part being shifted left 16 places then added to the low patrt.

The low part of owner and group are locatedii2_inode.i_uicandext2_inode.i_gidespectively.

The high part of owner and group are locate@xt?2_inode.osd2.hurd.h_i_uid_highd
ext2_inode.osd2.hurd.h_i_gid_higlespectively, for Hurd and located in
ext2_inode.osd2.linux.l_i_uid_higindext2_inode.osd2.linux.l_i_gid_highespectively, for Linux.

4.2. Extended Attributes

Extended attributes are name:value pairs associated permanently with files and directories, similar to the
environment strings associated with a process. An attribute may be defined or undefined. If it is defined,
its value may be empty or non-empty.

29

Chapter 4. File Attributes

Extended attributes are extensions to the normal attributes which are associated with all inodes in the
system. They are often used to provide additional functionality to a filesystem - for example, additional
security features such as Access Control Lists (ACLs) may be implemented using extended attributes.

Extended attributes are accessed as atomic objects. Reading retrieves the whole value of an attribute and
stores it in a buffer. Writing replaces any previous value with the new value.

In each ext2 inode, we have the i_file_acl field, reserved for Access Control Lists. This field is used for
storing the block number on which the extended attributes of an inode are stored instead (ACLs are
stored as extended attributes).

Extended attributes are stored on ‘plain’ disk blocks, which are not part of any files. The disk block
layout is similar to the layout used for directories. After the attribute block header, entry headers follow.
The size of entry headers varies with the length of the attribute name.

The attribute values are on the same block as their attribute entry descriptions, aligned to the end of the
attribute block. This allows for additional attributes to be added more easily.

A list of attribute names associated with a file can be retrieved. The filesystem handler returns a string of
names separated by null characters, terminated by two null characters at the end of the list.

4.2.1. Attribute Block Header

Figure 4-1. ext2_xattr_header structure

offset size description
0 4 h_magic
4 4 h_refcount
8 4 h_blocks
12 4 h_hash
16 16 reserved

4.2.1.1. h_magic

32bit magic number of identification (EXT2_XATTR_MAGIC = 0xEA020000).

4.2.1.2. h_refcount

32bit value used as reference count. This value is incremented everytime a link is created to this attribute
block and decremented when a link is destroyed. Whenever this value reaches 0 the attribute block can

30

Chapter 4. File Attributes

be freed.

4.2.1.3. h_blocks

32bit value indicating how many blocks are currently used by the extended attributes.

4.2.1.4. h_hash

32bit hash value of all attributes.

4.2.2. Attribute Entry Header

Figure 4-2. ext2_xattr_header structure

offset size description

1 e_name_len

1 e_name_index
2 e_value_offs

4 e_value_block
4 e _value_size

4 e_hash

16 ... €e_name

Nooh~DNEFEO

The total size of an attribute entry is always rounded to the next 4-bytes boundary.

4.2.2.1. e_name_len

8bit unsigned value indicating the length of the name.

4.2.2.2. e_name_index

8bit unsigned value used as attribute name index.

4.2.2.3. e_value_offs

16bit unsigned offset to the value within the value block.

31

4.2.2.4. e_value_block

32bit id of the block holding the value.

4.2.2.5. e_value_size

Chapter 4. File Attributes

32bit unsigned value indicating the size of the attribute value.

4.2.2.6. e_hash

32bit hash of attribute name and value.

4.2.2.7. e_name

Attribute name.

4.3. Behaviour Control Flags

Thei_flagsvalue in theinodestructure allows to specify how the file system should behave in regard to

the file. The following bits are currently defined:

Table 4-1. Behaviour Control Flags

EXT2_SECRM_FL
EXT2_UNRM_FL
EXT2_COMPR_FL
EXT2_SYNC_FL
EXT2_IMMUTABLE_FL
EXT2_APPEND_FL
EXT2_NODUMP_FL
EXT2_NOATIME_FL
EXT2_DIRTY_FL
EXT2_COMPRBLK_FL
EXT2_NOCOMPR_FL
EXT2_ECOMPR_FL
EXT2_BTREE_FL
EXT2_INDEX_FL

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00010000
0x00010000

secure deletion

record for undelete
compressed file
synchronous updates
immutable file

append only

do not dump/delete file
do not update .i_atime
dirty (file is in use?)
compressed blocks
access raw compressed data
compression error
b-tree format directory
Hash indexed directory

32

4.3.1.

4.3.2.

4.3.3.

4.3.4.

4.3.5.

4.3.6.

Chapter 4. File Attributes

EXT2_IMAGIC_FL 0x00020000 ?
EXT3 _JOURNAL_DATA FL 0x00040000 journal file data
EXT2_RESERVED_FL 0x80000000 reserved for ext2 implementation

EXT2 SECRM_FL - Secure Deletion

Enabling this bit will cause random data to be written over the flie’'s content several time before the
blocks are unlinked. Note that this is highly implementation dependant and as such, it should not be
assumed to be 100% secure. Make sure to study the implementation notes before relying on this option.

EXT2_UNRM_FL - Record for Undelete

When supported by the implementation, setting this bit will cause the deleted data to be moved to a
temporary location, where the user can restore the original file without any risk of data lost. This is most
useful when using ext2 on a desktop or workstation.

EXT2_COMPR_FL - Compressed File

The file’s content is compressed. There is no note about the particular algorithm used other than maybe
thes_algo_bitmayield of thesuperblockstructure.

EXT2 _SYNC_FL - Synchronous Updates

The file’s content in memory will be constantly synchronized with the content on disk. This is mostly
used for very sensitive boot files or encryption keys that you do not want to lose in case of a crash.

EXT2_IMMUTABLE_FL - Immutable File

The blocks associated with the file will not be exchanged. If for any reason a file system defragmentation
is launched, such files will not be moved. Mostly used for stage2 and stagel.5 boot loaders.

EXT2_APPEND_FL - Append Only

Writing can only be used to append content at the end of the file and not modify the current content.
Example of such use could be mailboxes, where anybody could send a message to a user but not modify
any already present.

33

Chapter 4. File Attributes

4.3.7. EXT2_NODUMP_FL - Do No Dump/Delete

Setting this bit will protect the file from deletion. As long as this bit is set, even if thieks_countis O,
the file will not be removed.

4.3.8. EXT2_NOATIME_FL - Do Not Update .i_atime

Thei_atimefield of theinodestructure will not be modified when the file is accessed if this bit is set.
The only good use | can think of that are related to security.

4.3.9. EXT2_DIRTY_FL - Dirty

| do not have information at this moment about the use of this bit.

4.3.10. EXT2_COMPRBLK_FL - Compressed Blocks

This flag is set if one or more blocks are compressed. You can have more information about compression
on ext2 at http://www.netspace.net.au/~reiter/e2compr/ Note that the project has not been updated since
1999.

4.3.11. EXT2_NOCOMPR_FL - Access Raw Compressed Data

When this flag is set, the file system implementation will not uncompress the data before fowarding it to
the application but will rather give it as is.

4.3.12. EXT2_ECOMPR_FL - Compression Error

This flag is set if an error was detected when trying to uncompress the file.

4.3.13. EXT2_BTREE_FL - B-Tree Format Directory

34

Chapter 4. File Attributes

4.3.14. EXT2_INDEX_FL - Hash Indexed Directory

When this bit is set, the format of the directory file is hash indexed. This is covered in detadstion
2.3

4.3.15. EXT2_IMAGIC_FL -

4.3.16. EXT2_JOURNAL_DATA_FL - Journal File Data

4.3.17. EXT2_RESERVED_FL - Reserved

35

Appendix A. Credits

I would like to personally thank everybody who contributed to this document, you are numerous and in
many cases | haven't kept track of all of you. Be sure that if you are not in this list, it's a mistake and do
not hesitate to contact me, it will be a pleasure to add your name to the list.

Andreas Gruenbacher (a.gruenbacher@bestbits.at)
Section 4.2

Daniel Phillips (phillips@innominate.de)
Section 2.3.1
Section 2.3.2
Section 2.3.3
Section 2.3.4
Section 2.3.5
Section 2.3.6
Section 2.3.7

Jeremy Stanley of Access Data Inc.
Pointed out the inversed values for EXT2_S IFSOCK and EXT2_S_IFLNK

36

	Table of Contents
	List of Tables
	List of Figures
	About this book
	Chapter 1. Disk Organisation
	1.1. superblock
	1.1.1. sinodescount
	1.1.2. sblockscount
	1.1.3. srblockscount
	1.1.4. sfreeblockscount
	1.1.5. sfreeinodescount
	1.1.6. sfirstdatablock
	1.1.7. slogblocksize
	1.1.8. slogfragsize
	1.1.9. sblockspergroup
	1.1.10. sfragspergroup
	1.1.11. sinodespergroup
	1.1.12. smtime
	1.1.13. swtime
	1.1.14. smntcount
	1.1.15. smaxmntcount
	1.1.16. smagic
	1.1.17. sstate
	1.1.18. serrors
	1.1.19. sminorrevlevel
	1.1.20. slastcheck
	1.1.21. scheckinterval
	1.1.22. screatoros
	1.1.23. srevlevel
	1.1.24. sdefresuid
	1.1.25. sdefresgid
	1.1.26. sfirstino
	1.1.27. sinodesize
	1.1.28. sblockgroupnr
	1.1.29. sfeaturecompat
	1.1.30. sfeatureincompat
	1.1.31. sfeaturerocompat
	1.1.32. suuid
	1.1.33. svolumename
	1.1.34. slastmounted
	1.1.35. salgobitmap

	1.2. Group Descriptor
	1.2.1. bgblockbitmap
	1.2.2. bginodebitmap
	1.2.3. bginodetable
	1.2.4. bgfreeblockscount
	1.2.5. bgfreeinodescount
	1.2.6. bguseddirscount
	1.2.7. bgpad
	1.2.8. bgreserved

	1.3. Block Bitmap
	1.4. Inode Bitmap
	1.5. Inode Table
	1.5.1. imode
	1.5.2. iuid
	1.5.3. isize
	1.5.4. iatime
	1.5.5. ictime
	1.5.6. imtime
	1.5.7. idtime
	1.5.8. igid
	1.5.9. ilinkscount
	1.5.10. iblocks
	1.5.11. iflags
	1.5.12. iosd1
	1.5.12.1. Hurd
	1.5.12.2. Linux
	1.5.12.3. Masix

	1.5.13. iblock
	1.5.14. igeneration
	1.5.15. ifileacl
	1.5.16. idiracl
	1.5.17. ifaddr
	1.5.18. iosd2
	1.5.18.1. Hurd
	1.5.18.1.1. hifrag
	1.5.18.1.2. hifsize
	1.5.18.1.3. himodehigh
	1.5.18.1.4. hiuidhigh
	1.5.18.1.5. higidhigh
	1.5.18.1.6. hiauthor

	1.5.18.2. Linux
	1.5.18.2.1. lifrag
	1.5.18.2.2. lifsize
	1.5.18.2.3. liuidhigh
	1.5.18.2.4. ligidhigh

	1.5.18.3. Masix
	1.5.18.3.1. mifrag
	1.5.18.3.2. mifsize

	1.6. Data Blocks

	Chapter 2. Directory Structure
	2.1. Directory File Format
	2.1.1. inode
	2.1.2. reclen
	2.1.3. namelen
	2.1.4. filetype
	2.1.5. name

	2.2. Sample Directory
	2.3. Indexed Directory Format
	2.3.1. Index Structure
	2.3.2. Lookup Algorithm
	2.3.3. Insert Algorithm
	2.3.4. Splitting
	2.3.5. Key Collisions
	2.3.6. Hash Function
	2.3.7. Performance

	Chapter 3. Inodes, file identifiers
	3.1. Inode Number
	3.2. Locating the Inode structure
	3.3. Locating the Inode Table

	Chapter 4. File Attributes
	4.1. Standard Attributes
	4.1.1. SUID, SGID and rwxrwxrwx
	4.1.2. File Size
	4.1.3. Owner and Group

	4.2. Extended Attributes
	4.2.1. Attribute Block Header
	4.2.1.1. hmagic
	4.2.1.2. hrefcount
	4.2.1.3. hblocks
	4.2.1.4. hhash

	4.2.2. Attribute Entry Header
	4.2.2.1. enamelen
	4.2.2.2. enameindex
	4.2.2.3. evalueoffs
	4.2.2.4. evalueblock
	4.2.2.5. evaluesize
	4.2.2.6. ehash
	4.2.2.7. ename

	4.3. Behaviour Control Flags
	4.3.1. EXT2SECRMFL Secure Deletion
	4.3.2. EXT2UNRMFL Record for Undelete
	4.3.3. EXT2COMPRFL Compressed File
	4.3.4. EXT2SYNCFL Synchronous Updates
	4.3.5. EXT2IMMUTABLEFL Immutable File
	4.3.6. EXT2APPENDFL Append Only
	4.3.7. EXT2NODUMPFL Do No Dump/Delete
	4.3.8. EXT2NOATIMEFL Do Not Update .iatime
	4.3.9. EXT2DIRTYFL Dirty
	4.3.10. EXT2COMPRBLKFL Compressed Blocks
	4.3.11. EXT2NOCOMPRFL Access Raw Compressed Data
	4.3.12. EXT2ECOMPRFL Compression Error
	4.3.13. EXT2BTREEFL BTree Format Directory
	4.3.14. EXT2INDEXFL Hash Indexed Directory
	4.3.15. EXT2IMAGICFL
	4.3.16. EXT2JOURNALDATAFL Journal File Data
	4.3.17. EXT2RESERVEDFL Reserved

	Appendix A. Credits

