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Chapter 18\CHAPTER 18

The Ext2 and Ext3
Filesystems

In this chapter, we finish our extensive discussion of I/O and filesystems by taking a
look at the details the kernel has to take care of when interacting with a specific file-
system. Because the Second Extended Filesystem (Ext2) is native to Linux and is
used on virtually every Linux system, it is a natural choice for this discussion. Fur-
thermore, Ext2 illustrates a lot of good practices in its support for modern filesystem
features with fast performance. To be sure, other filesystems supported by Linux
include many interesting features, but we have no room to examine all of them.

After introducing Ext2 in the section “General Characteristics of Ext2,” we describe
the data structures needed, just as in other chapters. Because we are looking at a spe-
cific way to store data on disk, we have to consider two versions of the same data
structures. The section “Ext2 Disk Data Structures” shows the data structures stored
by Ext2 on disk, while “Ext2 Memory Data Structures” shows the corresponding ver-
sions in memory.

Then we get to the operations performed on the filesystem. In the section “Creating
the Ext2 Filesystem,” we discuss how Ext2 is created in a disk partition. The next
sections describe the kernel activities performed whenever the disk is used. Most of
these are relatively low-level activities dealing with the allocation of disk space to
inodes and data blocks.

In the last section, we give a short description of the Ext3 filesystem, which is the
next step in the evolution of the Ext2 filesystem.

General Characteristics of Ext2
Unix-like operating systems use several types of filesystems. Although the files of all
such filesystems have a common subset of attributes required by a few POSIX APIs
such as stat(), each filesystem is implemented in a different way.

The first versions of Linux were based on the MINIX filesystem. As Linux matured,
the Extended Filesystem (Ext FS) was introduced; it included several significant
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extensions, but offered unsatisfactory performance. The Second Extended Filesystem
(Ext2) was introduced in 1994; besides including several new features, it is quite effi-
cient and robust and is, together with its offspring Ext3, the most widely used Linux
filesystem.

The following features contribute to the efficiency of Ext2:

• When creating an Ext2 filesystem, the system administrator may choose the
optimal block size (from 1,024 to 4,096 bytes), depending on the expected aver-
age file length. For instance, a 1,024-block size is preferable when the average file
length is smaller than a few thousand bytes because this leads to less internal
fragmentation—that is, less of a mismatch between the file length and the por-
tion of the disk that stores it (see the section “Memory Area Management” in
Chapter 8, where internal fragmentation for dynamic memory was discussed).
On the other hand, larger block sizes are usually preferable for files greater than
a few thousand bytes because this leads to fewer disk transfers, thus reducing
system overhead.

• When creating an Ext2 filesystem, the system administrator may choose how
many inodes to allow for a partition of a given size, depending on the expected
number of files to be stored on it. This maximizes the effectively usable disk
space.

• The filesystem partitions disk blocks into groups. Each group includes data
blocks and inodes stored in adjacent tracks. Thanks to this structure, files stored
in a single block group can be accessed with a lower average disk seek time.

• The filesystem preallocates disk data blocks to regular files before they are actu-
ally used. Thus, when the file increases in size, several blocks are already
reserved at physically adjacent positions, reducing file fragmentation.

• Fast symbolic links (see the section “Hard and Soft Links” in Chapter 1) are sup-
ported. If the symbolic link represents a short pathname (at most 60 characters),
it can be stored in the inode and can thus be translated without reading a data
block.

Moreover, the Second Extended Filesystem includes other features that make it both
robust and flexible:

• A careful implementation of file-updating that minimizes the impact of system
crashes. For instance, when creating a new hard link for a file, the counter of
hard links in the disk inode is increased first, and the new name is added into the
proper directory next. In this way, if a hardware failure occurs after the inode
update but before the directory can be changed, the directory is consistent, even
if the inode’s hard link counter is wrong. Deleting the file does not lead to cata-
strophic results, although the file’s data blocks cannot be automatically
reclaimed. If the reverse were done (changing the directory before updating the
inode), the same hardware failure would produce a dangerous inconsistency:
deleting the original hard link would remove its data blocks from disk, yet the
new directory entry would refer to an inode that no longer exists. If that inode
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number were used later for another file, writing into the stale directory entry
would corrupt the new file.

• Support for automatic consistency checks on the filesystem status at boot time.
The checks are performed by the e2fsck external program, which may be acti-
vated not only after a system crash, but also after a predefined number of filesys-
tem mounts (a counter is increased after each mount operation) or after a
predefined amount of time has elapsed since the most recent check.

• Support for immutable files (they cannot be modified, deleted, or renamed) and
for append-only files (data can be added only to the end of them).

• Compatibility with both the Unix System V Release 4 and the BSD semantics of
the user group ID for a new file. In SVR4, the new file assumes the user group ID
of the process that creates it; in BSD, the new file inherits the user group ID of
the directory containing it. Ext2 includes a mount option that specifies which
semantic to use.

Even if the Ext2 filesystem is a mature, stable program, several additional features
have been considered for inclusion. Some of them have already been coded and are
available as external patches. Others are just planned, but in some cases, fields have
already been introduced in the Ext2 inode for them. The most significant features
being considered are:

Block fragmentation
System administrators usually choose large block sizes for accessing disks,
because computer applications often deal with large files. As a result, small files
stored in large blocks waste a lot of disk space. This problem can be solved by
allowing several files to be stored in different fragments of the same block.

Handling of transparently compressed and encrypted files
These new options, which must be specified when creating a file, allow users to
transparently store compressed and/or encrypted versions of their files on disk.

Logical deletion
An undelete option allows users to easily recover, if needed, the contents of a
previously removed file.

Journaling
Journaling avoids the time-consuming check that is automatically performed on
a filesystem when it is abruptly unmounted—for instance, as a consequence of a
system crash.

In practice, none of these features has been officially included in the Ext2 filesystem.
One might say that Ext2 is victim of its success; it has been the preferred filesystem
adopted by most Linux distribution companies until a few years ago, and the mil-
lions of users who relied on it every day would have looked suspiciously at any
attempt to replace Ext2 with some other filesystem.
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The most compelling feature missing from Ext2 is journaling, which is required by
high-availability servers. To provide for a smooth transition, journaling has not been
introduced in the Ext2 filesystem; rather, as we’ll discuss in the later section “The
Ext3 Filesystem,” a more recent filesystem that is fully compatible with Ext2 has been
created, which also offers journaling. Users who do not really require journaling may
continue to use the good old Ext2 filesystem, while the others will likely adopt the
new filesystem. Nowadays, most distributions adopt Ext3 as the standard filesystem.

Ext2 Disk Data Structures
The first block in each Ext2 partition is never managed by the Ext2 filesystem,
because it is reserved for the partition boot sector (see Appendix A). The rest of the
Ext2 partition is split into block groups, each of which has the layout shown in
Figure 18-1. As you will notice from the figure, some data structures must fit in
exactly one block, while others may require more than one block. All the block
groups in the filesystem have the same size and are stored sequentially, thus the ker-
nel can derive the location of a block group in a disk simply from its integer index.

Block groups reduce file fragmentation, because the kernel tries to keep the data
blocks belonging to a file in the same block group, if possible. Each block in a block
group contains one of the following pieces of information:

• A copy of the filesystem’s superblock

• A copy of the group of block group descriptors

• A data block bitmap

• An inode bitmap

• A table of inodes

• A chunk of data that belongs to a file; i.e., data blocks

If a block does not contain any meaningful information, it is said to be free.

Figure 18-1. Layouts of an Ext2 partition and of an Ext2 block group
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As you can see from Figure 18-1, both the superblock and the group descriptors are
duplicated in each block group. Only the superblock and the group descriptors
included in block group 0 are used by the kernel, while the remaining superblocks
and group descriptors are left unchanged; in fact, the kernel doesn’t even look at
them. When the e2fsck program executes a consistency check on the filesystem sta-
tus, it refers to the superblock and the group descriptors stored in block group 0, and
then copies them into all other block groups. If data corruption occurs and the main
superblock or the main group descriptors in block group 0 become invalid, the sys-
tem administrator can instruct e2fsck to refer to the old copies of the superblock and
the group descriptors stored in a block groups other than the first. Usually, the
redundant copies store enough information to allow e2fsck to bring the Ext2 parti-
tion back to a consistent state.

How many block groups are there? Well, that depends both on the partition size and
the block size. The main constraint is that the block bitmap, which is used to iden-
tify the blocks that are used and free inside a group, must be stored in a single block.
Therefore, in each block group, there can be at most 8×b blocks, where b is the block
size in bytes. Thus, the total number of block groups is roughly s/(8×b), where s is
the partition size in blocks.

For example, let’s consider a 32-GB Ext2 partition with a 4-KB block size. In this
case, each 4-KB block bitmap describes 32K data blocks—that is, 128 MB. There-
fore, at most 256 block groups are needed. Clearly, the smaller the block size, the
larger the number of block groups.

Superblock
An Ext2 disk superblock is stored in an ext2_super_block structure, whose fields are
listed in Table 18-1.* The _ _u8, _ _u16, and _ _u32 data types denote unsigned num-
bers of length 8, 16, and 32 bits respectively, while the _ _s8, _ _s16, _ _s32 data types
denote signed numbers of length 8, 16, and 32 bits. To explicitly specify the order in
which the bytes of a word or double-word are stored on disk, the kernel also makes
use of the _ _le16, _ _le32, _ _be16, and _ _be32 data types; the former two types
denote the little-endian ordering for words and double-words (the least significant
byte is stored at the highest address), respectively, while the latter two types denote
the big-endian ordering (the most significant byte is stored at the highest address).

* To ensure compatibility between the Ext2 and Ext3 filesystems, the ext2_super_block data structure includes
some Ext3-specific fields, which are not shown in Table 18-1.

Table 18-1. The fields of the Ext2 superblock

Type Field Description

_ _le32 s_inodes_count Total number of inodes

_ _le32 s_blocks_count Filesystem size in blocks
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_ _le32 s_r_blocks_count Number of reserved blocks

_ _le32 s_free_blocks_count Free blocks counter

_ _le32 s_free_inodes_count Free inodes counter

_ _le32 s_first_data_block Number of first useful block (always 1)

_ _le32 s_log_block_size Block size

_ _le32 s_log_frag_size Fragment size

_ _le32 s_blocks_per_group Number of blocks per group

_ _le32 s_frags_per_group Number of fragments per group

_ _le32 s_inodes_per_group Number of inodes per group

_ _le32 s_mtime Time of last mount operation

_ _le32 s_wtime Time of last write operation

_ _le16 s_mnt_count Mount operations counter

_ _le16 s_max_mnt_count Number of mount operations before check

_ _le16 s_magic Magic signature

_ _le16 s_state Status flag

_ _le16 s_errors Behavior when detecting errors

_ _le16 s_minor_rev_level Minor revision level

_ _le32 s_lastcheck Time of last check

_ _le32 s_checkinterval Time between checks

_ _le32 s_creator_os OS where filesystem was created

_ _le32 s_rev_level Revision level of the filesystem

_ _le16 s_def_resuid Default UID for reserved blocks

_ _le16 s_def_resgid Default user group ID for reserved blocks

_ _le32 s_first_ino Number of first nonreserved inode

_ _le16 s_inode_size Size of on-disk inode structure

_ _le16 s_block_group_nr Block group number of this superblock

_ _le32 s_feature_compat Compatible features bitmap

_ _le32 s_feature_incompat Incompatible features bitmap

_ _le32 s_feature_ro_compat Read-only compatible features bitmap

_ _u8 [16] s_uuid 128-bit filesystem identifier

char [16] s_volume_name Volume name

char [64] s_last_mounted Pathname of last mount point

_ _le32 s_algorithm_usage_bitmap Used for compression

_ _u8 s_prealloc_blocks Number of blocks to preallocate

_ _u8 s_prealloc_dir_blocks Number of blocks to preallocate for directories

_ _u16 s_padding1 Alignment to word

_ _u32 [204] s_reserved Nulls to pad out 1,024 bytes

Table 18-1. The fields of the Ext2 superblock (continued)

Type Field Description
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The s_inodes_count field stores the number of inodes, while the s_blocks_count field
stores the number of blocks in the Ext2 filesystem.

The s_log_block_size field expresses the block size as a power of 2, using 1,024
bytes as the unit. Thus, 0 denotes 1,024-byte blocks, 1 denotes 2,048-byte blocks,
and so on. The s_log_frag_size field is currently equal to s_log_block_size, because
block fragmentation is not yet implemented.

The s_blocks_per_group, s_frags_per_group, and s_inodes_per_group fields store the
number of blocks, fragments, and inodes in each block group, respectively.

Some disk blocks are reserved to the superuser (or to some other user or group of
users selected by the s_def_resuid and s_def_resgid fields). These blocks allow the
system administrator to continue to use the filesystem even when no more free
blocks are available for normal users.

The s_mnt_count, s_max_mnt_count, s_lastcheck, and s_checkinterval fields set up
the Ext2 filesystem to be checked automatically at boot time. These fields cause
e2fsck to run after a predefined number of mount operations has been performed, or
when a predefined amount of time has elapsed since the last consistency check.
(Both kinds of checks can be used together.) The consistency check is also enforced
at boot time if the filesystem has not been cleanly unmounted (for instance, after a
system crash) or when the kernel discovers some errors in it. The s_state field stores
the value 0 if the filesystem is mounted or was not cleanly unmounted, 1 if it was
cleanly unmounted, and 2 if it contains errors.

Group Descriptor and Bitmap
Each block group has its own group descriptor, an ext2_group_desc structure whose
fields are illustrated in Table 18-2.

The bg_free_blocks_count, bg_free_inodes_count, and bg_used_dirs_count fields are
used when allocating new inodes and data blocks. These fields determine the most
suitable block in which to allocate each data structure. The bitmaps are sequences of

Table 18-2. The fields of the Ext2 group descriptor

Type Field Description

_ _le32 bg_block_bitmap Block number of block bitmap

_ _le32 bg_inode_bitmap Block number of inode bitmap

_ _le32 bg_inode_table Block number of first inode table block

_ _le16 bg_free_blocks_count Number of free blocks in the group

_ _le16 bg_free_inodes_count Number of free inodes in the group

_ _le16 bg_used_dirs_count Number of directories in the group

_ _le16 bg_pad Alignment to word

_ _le32 [3] bg_reserved Nulls to pad out 24 bytes
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bits, where the value 0 specifies that the corresponding inode or data block is free
and the value 1 specifies that it is used. Because each bitmap must be stored inside a
single block and because the block size can be 1,024, 2,048, or 4,096 bytes, a single
bitmap describes the state of 8,192, 16,384, or 32,768 blocks.

Inode Table
The inode table consists of a series of consecutive blocks, each of which contains a
predefined number of inodes. The block number of the first block of the inode table
is stored in the bg_inode_table field of the group descriptor.

All inodes have the same size: 128 bytes. A 1,024-byte block contains 8 inodes, while
a 4,096-byte block contains 32 inodes. To figure out how many blocks are occupied
by the inode table, divide the total number of inodes in a group (stored in the s_
inodes_per_group field of the superblock) by the number of inodes per block.

Each Ext2 inode is an ext2_inode structure whose fields are illustrated in Table 18-3.

Many fields related to POSIX specifications are similar to the corresponding fields of
the VFS’s inode object and have already been discussed in the section “Inode

Table 18-3. The fields of an Ext2 disk inode

Type Field Description

_ _le16 i_mode File type and access rights

_ _le16 i_uid Owner identifier

_ _le32 i_size File length in bytes

_ _le32 i_atime Time of last file access

_ _le32 i_ctime Time that inode last changed

_ _le32 i_mtime Time that file contents last changed

_ _le32 i_dtime Time of file deletion

_ _le16 i_gid User group identifier

_ _le16 i_links_count Hard links counter

_ _le32 i_blocks Number of data blocks of the file

_ _le32 i_flags File flags

union osd1 Specific operating system information

_ _le32 [EXT2_N_BLOCKS] i_block Pointers to data blocks

_ _le32 i_generation File version (used when the file is accessed by a
network filesystem)

_ _le32 i_file_acl File access control list

_ _le32 i_dir_acl Directory access control list

_ _le32 i_faddr Fragment address

union osd2 Specific operating system information
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Objects” in Chapter 12. The remaining ones refer to the Ext2-specific implementa-
tion and deal mostly with block allocation.

In particular, the i_size field stores the effective length of the file in bytes, while the
i_blocks field stores the number of data blocks (in units of 512 bytes) that have been
allocated to the file.

The values of i_size and i_blocks are not necessarily related. Because a file is always
stored in an integer number of blocks, a nonempty file receives at least one data block
(since fragmentation is not yet implemented) and i_size may be smaller than 512×i_
blocks. On the other hand, as we’ll see in the section “File Holes” later in this chapter,
a file may contain holes. In that case, i_size may be greater than 512×i_blocks.

The i_block field is an array of EXT2_N_BLOCKS (usually 15) pointers to blocks used to
identify the data blocks allocated to the file (see the section “Data Blocks Address-
ing” later in this chapter).

The 32 bits reserved for the i_size field limit the file size to 4 GB. Actually, the
highest-order bit of the i_size field is not used, so the maximum file size is limited to
2 GB. However, the Ext2 filesystem includes a “dirty trick” that allows larger files on
systems that sport a 64-bit processor such as AMD’s Opteron or IBM’s PowerPC G5.
Essentially, the i_dir_acl field of the inode, which is not used for regular files, repre-
sents a 32-bit extension of the i_size field. Therefore, the file size is stored in the
inode as a 64-bit integer. The 64-bit version of the Ext2 filesystem is somewhat com-
patible with the 32-bit version because an Ext2 filesystem created on a 64-bit archi-
tecture may be mounted on a 32-bit architecture, and vice versa. On a 32-bit
architecture, a large file cannot be accessed, unless opening the file with the O_
LARGEFILE flag set (see the section “The open( ) System Call” in Chapter 12).

Recall that the VFS model requires each file to have a different inode number. In
Ext2, there is no need to store on disk a mapping between an inode number and the
corresponding block number because the latter value can be derived from the block
group number and the relative position inside the inode table. For example, suppose
that each block group contains 4,096 inodes and that we want to know the address
on disk of inode 13,021. In this case, the inode belongs to the third block group and
its disk address is stored in the 733rd entry of the corresponding inode table. As you
can see, the inode number is just a key used by the Ext2 routines to retrieve the
proper inode descriptor on disk quickly.

Extended Attributes of an Inode
The Ext2 inode format is a kind of straitjacket for filesystem designers. The length of
an inode must be a power of 2 to avoid internal fragmentation in the blocks that
store the inode table. Actually, most of the 128 characters of an Ext2 inode are cur-
rently packed with information, and there is little room left for additional fields. On
the other hand, expanding the inode length to 256 would be quite wasteful, besides
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introducing compatibility problems between Ext2 filesystems that use different inode
lengths.

Extended attributes have been introduced to overcome the above limitation. These
attributes are stored on a disk block allocated outside of any inode. The i_file_acl
field of an inode points to the block containing the extended attributes. Different
inodes that have the same set of extended attributes may share the same block.

Each extended attribute has a name and a value. Both of them are encoded as vari-
able length arrays of characters, as specified by the ext2_xattr_entry descriptor.
Figure 18-2 shows the layout in Ext2 of the extended attributes inside a block. Each
attribute is split in two parts: the ext2_xattr_entry descriptor together with the
name of the attribute are placed at the beginning of the block, while the value of the
attribute is placed at the end of the block. The entries at the beginning of the block
are ordered according to the attribute names, while the positions of the values are
fixed, because they are determined by the allocation order of the attributes.

There are many system calls used to set, retrieve, list, and remove the extended
attributes of a file. The setxattr(), lsetxattr(), and fsetxattr() system calls set an
extended attribute of a file; essentially, they differ in how symbolic links are han-
dled, and in how the file is specified (either passing a pathname or a file descriptor).
Similarly, the getxattr(), lgetxattr(), and fgetxattr() system calls return the value
of an extended attribute. The listxattr(), llistxattr(), and flistxattr() list all
extended attributes of a file. Finally, the removexattr(), lremovexattr(), and
fremovexattr() system calls remove an extended attribute from a file.

Access Control Lists
Access control lists were proposed a long time ago to improve the file protection
mechanism in Unix filesystems. Instead of classifying the users of a file under three
classes—owner, group, and others—an access control list (ACL) can be associated
with each file. Thanks to this kind of list, a user may specify for each of his files the
names of specific users (or groups of users) and the privileges to be given to these
users.

Figure 18-2. Layout of a block containing extended attributes
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Linux 2.6 fully supports ACLs by making use of inode extended attributes. As a mat-
ter of fact, extended attributes have been introduced mainly to support ACLs. There-
fore, the chacl(), setfacl(), and getfacl() library functions, which allow you to
manipulate the ACLs of a file, rely essentially upon the setxattr() and getxattr()
system calls introduced in the previous section.

Unfortunately, the outcome of a working group that defined security extensions
within the POSIX 1003.1 family of standards has never been formalized as a new
POSIX standard. As a result, ACLs are supported nowadays on different filesystem
types on many UNIX-like systems, albeit with a number of subtle differences among
the different implementations.

How Various File Types Use Disk Blocks
The different types of files recognized by Ext2 (regular files, pipes, etc.) use data
blocks in different ways. Some files store no data and therefore need no data blocks
at all. This section discusses the storage requirements for each type, which are listed
in Table 18-4.

Regular file

Regular files are the most common case and receive almost all the attention in this
chapter. But a regular file needs data blocks only when it starts to have data. When
first created, a regular file is empty and needs no data blocks; it can also be emptied
by the truncate( ) or open() system calls. Both situations are common; for instance,
when you issue a shell command that includes the string >filename, the shell creates
an empty file or truncates an existing one.

Directory

Ext2 implements directories as a special kind of file whose data blocks store file-
names together with the corresponding inode numbers. In particular, such data
blocks contain structures of type ext2_dir_entry_2. The fields of that structure are

Table 18-4. Ext2 file types

File_type Description

0 Unknown

1 Regular file

2 Directory

3 Character device

4 Block device

5 Named pipe

6 Socket

7 Symbolic link



This is the Title of the Book, eMatter Edition
Copyright © 2007 O’Reilly & Associates, Inc. All rights reserved.

Ext2 Disk Data Structures | 749

shown in Table 18-5. The structure has a variable length, because the last name field
is a variable length array of up to EXT2_NAME_LEN characters (usually 255). Moreover,
for reasons of efficiency, the length of a directory entry is always a multiple of 4 and,
therefore, null characters (\0) are added for padding at the end of the filename, if
necessary. The name_len field stores the actual filename length (see Figure 18-3).

The file_type field stores a value that specifies the file type (see Table 18-4). The
rec_len field may be interpreted as a pointer to the next valid directory entry: it is the
offset to be added to the starting address of the directory entry to get the starting
address of the next valid directory entry. To delete a directory entry, it is sufficient to
set its inode field to 0 and suitably increment the value of the rec_len field of the pre-
vious valid entry. Read the rec_len field of Figure 18-3 carefully; you’ll see that the
oldfile entry was deleted because the rec_len field of usr is set to 12+16 (the lengths
of the usr and oldfile entries).

Symbolic link

As stated before, if the pathname of a symbolic link has up to 60 characters, it is
stored in the i_block field of the inode, which consists of an array of 15 4-byte inte-
gers; no data block is therefore required. If the pathname is longer than 60 charac-
ters, however, a single data block is required.

Table 18-5. The fields of an Ext2 directory entry

Type Field Description

_ _le32 inode Inode number

_ _le16 rec_len Directory entry length

_ _u8 name_len Filename length

_ _u8 file_type File type

char [EXT2_NAME_LEN] name Filename

Figure 18-3. An example of the Ext2 directory
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Device file, pipe, and socket

No data blocks are required for these kinds of files. All the necessary information is
stored in the inode.

Ext2 Memory Data Structures
For the sake of efficiency, most information stored in the disk data structures of an
Ext2 partition are copied into RAM when the filesystem is mounted, thus allowing
the kernel to avoid many subsequent disk read operations. To get an idea of how
often some data structures change, consider some fundamental operations:

• When a new file is created, the values of the s_free_inodes_count field in the
Ext2 superblock and of the bg_free_inodes_count field in the proper group
descriptor must be decreased.

• If the kernel appends some data to an existing file so that the number of data
blocks allocated for it increases, the values of the s_free_blocks_count field in
the Ext2 superblock and of the bg_free_blocks_count field in the group descrip-
tor must be modified.

• Even just rewriting a portion of an existing file involves an update of the s_wtime
field of the Ext2 superblock.

Because all Ext2 disk data structures are stored in blocks of the Ext2 partition, the
kernel uses the page cache to keep them up-to-date (see the section “Writing Dirty
Pages to Disk” in Chapter 15).

Table 18-6 specifies, for each type of data related to Ext2 filesystems and files, the
data structure used on the disk to represent its data, the data structure used by the
kernel in memory, and a rule of thumb used to determine how much caching is used.
Data that is updated very frequently is always cached; that is, the data is permanently
stored in memory and included in the page cache until the corresponding Ext2 parti-
tion is unmounted. The kernel gets this result by keeping the page’s usage counter
greater than 0 at all times.

Table 18-6. VFS images of Ext2 data structures

Type Disk data structure Memory data structure Caching mode

Superblock ext2_super_block ext2_sb_info Always cached

Group descriptor ext2_group_desc ext2_group_desc Always cached

Block bitmap Bit array in block Bit array in buffer Dynamic

inode bitmap Bit array in block Bit array in buffer Dynamic

inode ext2_inode ext2_inode_info Dynamic

Data block Array of bytes VFS buffer Dynamic

Free inode ext2_inode None Never

Free block Array of bytes None Never
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The never-cached data is not kept in any cache because it does not represent mean-
ingful information. Conversely, the always-cached data is always present in RAM,
thus it is never necessary to read the data from disk (periodically, however, the data
must be written back to disk). In between these extremes lies the dynamic mode. In
this mode, the data is kept in a cache as long as the associated object (inode, data
block, or bitmap) is in use; when the file is closed or the data block is deleted, the
page frame reclaiming algorithm may remove the associated data from the cache.

It is interesting to observe that inode and block bitmaps are not kept permanently in
memory; rather, they are read from disk when needed. Actually, many disk reads are
avoided thanks to the page cache, which keeps in memory the most recently used
disk blocks (see the section “Storing Blocks in the Page Cache” in Chapter 15).*

The Ext2 Superblock Object
As stated in the section “Superblock Objects” in Chapter 12, the s_fs_info field of
the VFS superblock points to a structure containing filesystem-specific data. In the
case of Ext2, this field points to a structure of type ext2_sb_info, which includes the
following information:

• Most of the disk superblock fields

• An s_sbh pointer to the buffer head of the buffer containing the disk superblock

• An s_es pointer to the buffer containing the disk superblock

• The number of group descriptors, s_desc_per_block, that can be packed in a
block

• An s_group_desc pointer to an array of buffer heads of buffers containing the
group descriptors (usually, a single entry is sufficient)

• Other data related to mount state, mount options, and so on

Figure 18-4 shows the links between the ext2_sb_info data structures and the buff-
ers and buffer heads relative to the Ext2 superblock and to the group descriptors.

When the kernel mounts an Ext2 filesystem, it invokes the ext2_fill_super() func-
tion to allocate space for the data structures and to fill them with data read from disk
(see the section “Mounting a Generic Filesystem” in Chapter 12). This is a simplified
description of the function, which emphasizes the memory allocations for buffers
and descriptors:

1. Allocates an ext2_sb_info descriptor and stores its address in the s_fs_info field
of the superblock object passed as the parameter.

* In Linux 2.4 and earlier versions, the most recently used inode and block bitmaps were stored in ad-hoc
caches of bounded size.
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2. Invokes _ _bread() to allocate a buffer in a buffer page together with the corre-
sponding buffer head, and to read the superblock from disk into the buffer; as
discussed in the section “Searching Blocks in the Page Cache” in Chapter 15, no
allocation is performed if the block is already stored in a buffer page in the page
cache and it is up-to-date. Stores the buffer head address in the s_sbh field of the
Ext2 superblock object.

3. Allocates an array of bytes—one byte for each group—and stores its address in
the s_debts field of the ext2_sb_info descriptor (see the section “Creating
inodes” later in this chapter).

4. Allocates an array of pointers to buffer heads, one for each group descriptor, and
stores the address of the array in the s_group_desc field of the ext2_sb_info
descriptor.

5. Invokes repeatedly _ _bread() to allocate buffers and to read from disk the
blocks containing the Ext2 group descriptors; stores the addresses of the buffer
heads in the s_group_desc array allocated in the previous step.

6. Allocates an inode and a dentry object for the root directory, and sets up a few
fields of the superblock object so that it will be possible to read the root inode
from disk.

Clearly, all the data structures allocated by ext2_fill_super() are kept in memory
after the function returns; they will be released only when the Ext2 filesystem will be
unmounted. When the kernel must modify a field in the Ext2 superblock, it simply
writes the new value in the proper position of the corresponding buffer and then
marks the buffer as dirty.

Figure 18-4. The ext2_sb_info data structure
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The Ext2 inode Object
When opening a file, a pathname lookup is performed. For each component of the
pathname that is not already in the dentry cache, a new dentry object and a new inode
object are created (see the section “Standard Pathname Lookup” in Chapter 12).
When the VFS accesses an Ext2 disk inode, it creates a corresponding inode descriptor
of type ext2_inode_info. This descriptor includes the following information:

• The whole VFS inode object (see Table 12-3 in Chapter 12) stored in the field
vfs_inode

• Most of the fields found in the disk’s inode structure that are not kept in the VFS
inode

• The i_block_group block group index at which the inode belongs (see the sec-
tion “Ext2 Disk Data Structures” earlier in this chapter)

• The i_next_alloc_block and i_next_alloc_goal fields, which store the logical
block number and the physical block number of the disk block that was most
recently allocated to the file, respectively

• The i_prealloc_block and i_prealloc_count fields, which are used for data block
preallocation (see the section “Allocating a Data Block” later in this chapter)

• The xattr_sem field, a read/write semaphore that allows extended attributes to
be read concurrently with the file data

• The i_acl and i_default_acl fields, which point to the ACLs of the file

When dealing with Ext2 files, the alloc_inode superblock method is implemented by
means of the ext2_alloc_inode() function. It gets first an ext2_inode_info descriptor
from the ext2_inode_cachep slab allocator cache, then it returns the address of the
inode object embedded in the new ext2_inode_info descriptor.

Creating the Ext2 Filesystem
There are generally two stages to creating a filesystem on a disk. The first step is to
format it so that the disk driver can read and write blocks on it. Modern hard disks
come preformatted from the factory and need not be reformatted; floppy disks may
be formatted on Linux using a utility program such as superformat or fdformat. The
second step involves creating a filesystem, which means setting up the structures
described in detail earlier in this chapter.

Ext2 filesystems are created by the mke2fs utility program; it assumes the following
default options, which may be modified by the user with flags on the command line:

• Block size: 1,024 bytes (default value for a small filesystem)

• Fragment size: block size (block fragmentation is not implemented)

• Number of allocated inodes: 1 inode for each 8,192 bytes

• Percentage of reserved blocks: 5 percent
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The program performs the following actions:

1. Initializes the superblock and the group descriptors.

2. Optionally, checks whether the partition contains defective blocks; if so, it cre-
ates a list of defective blocks.

3. For each block group, reserves all the disk blocks needed to store the super-
block, the group descriptors, the inode table, and the two bitmaps.

4. Initializes the inode bitmap and the data map bitmap of each block group to 0.

5. Initializes the inode table of each block group.

6. Creates the /root directory.

7. Creates the lost+found directory, which is used by e2fsck to link the lost and
found defective blocks.

8. Updates the inode bitmap and the data block bitmap of the block group in
which the two previous directories have been created.

9. Groups the defective blocks (if any) in the lost+found directory.

Let’s consider how an Ext2 1.44 MB floppy disk is initialized by mke2fs with the
default options.

Once mounted, it appears to the VFS as a volume consisting of 1,412 blocks; each
one is 1,024 bytes in length. To examine the disk’s contents, we can execute the
Unix command:

$ dd if=/dev/fd0 bs=1k count=1440 | od -tx1 -Ax > /tmp/dump_hex

to get a file containing the hexadecimal dump of the floppy disk contents in the /tmp
directory.*

By looking at that file, we can see that, due to the limited capacity of the disk, a sin-
gle group descriptor is sufficient. We also notice that the number of reserved blocks
is set to 72 (5 percent of 1,440) and, according to the default option, the inode table
must include 1 inode for each 8,192 bytes—that is, 184 inodes stored in 23 blocks.

Table 18-7 summarizes how the Ext2 filesystem is created on a floppy disk when the
default options are selected.

* Most information on an Ext2 filesystem could also be obtained by using the dumpe2fs and debugfs utility
programs.

Table 18-7. Ext2 block allocation for a floppy disk

Block Content

0 Boot block

1 Superblock

2 Block containing a single block group descriptor

3 Data block bitmap
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Ext2 Methods
Many of the VFS methods described in Chapter 12 have a corresponding Ext2 imple-
mentation. Because it would take a whole book to describe all of them, we limit our-
selves to briefly reviewing the methods implemented in Ext2. Once the disk and the
memory data structures are clearly understood, the reader should be able to follow
the code of the Ext2 functions that implement them.

Ext2 Superblock Operations
Many VFS superblock operations have a specific implementation in Ext2, namely
alloc_inode, destroy_inode, read_inode, write_inode, delete_inode, put_super,
write_super, statfs, remount_fs, and clear_inode. The addresses of the superblock
methods are stored in the ext2_sops array of pointers.

Ext2 inode Operations
Some of the VFS inode operations have a specific implementation in Ext2, which
depends on the type of the file to which the inode refers.

The inode operations for Ext2 regular files and Ext2 directories are shown in
Table 18-8; the purpose of each method is described in the section “Inode Objects”
in Chapter 12. The table does not show the methods that are undefined (a NULL
pointer) for both regular files and directories; recall that if a method is undefined, the
VFS either invokes a generic function or does nothing at all. The addresses of the
Ext2 methods for regular files and directories are stored in the ext2_file_inode_
operations and ext2_dir_inode_operations tables, respectively.

4 inode bitmap

5–27 inode table: inodes up to 10: reserved (inode 2 is the root); inode 11: lost+found; inodes 12–184: free

28 Root directory (includes ., .., and lost+found)

29 lost+found directory (includes . and ..)

30–40 Reserved blocks preallocated for lost+found directory

41–1439 Free blocks

Table 18-8. Ext2 inode operations for regular files and directories

VFS inode operation Regular file Directory

create NULL ext2_create()

lookup NULL ext2_lookup()

link NULL ext2_link()

unlink NULL ext2_unlink()

Table 18-7. Ext2 block allocation for a floppy disk (continued)

Block Content
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The inode operations for Ext2 symbolic links are shown in Table 18-9 (undefined
methods have been omitted). Actually, there are two types of symbolic links: the fast
symbolic links represent pathnames that can be fully stored inside the inodes, while
the regular symbolic links represent longer pathnames. Accordingly, there are two
sets of inode operations, which are stored in the ext2_fast_symlink_inode_
operations and ext2_symlink_inode_operations tables, respectively.

If the inode refers to a character device file, to a block device file, or to a named pipe
(see “FIFOs” in Chapter 19), the inode operations do not depend on the filesystem.
They are specified in the chrdev_inode_operations, blkdev_inode_operations, and
fifo_inode_operations tables, respectively.

Ext2 File Operations
The file operations specific to the Ext2 filesystem are listed in Table 18-10. As you
can see, several VFS methods are implemented by generic functions that are common

symlink NULL ext2_symlink()

mkdir NULL ext2_mkdir()

rmdir NULL ext2_rmdir()

mknod NULL ext2_mknod()

rename NULL ext2_rename()

truncate ext2_truncate() NULL

permission ext2_permission() ext2_permission()

setattr ext2_setattr() ext2_setattr()

setxattr generic_setxattr() generic_setxattr()

getxattr generic_getxattr() generic_getxattr()

listxattr ext2_listxattr() ext2_listxattr()

removexattr generic_removexattr() generic_removexattr()

Table 18-9. Ext2 inode operations for fast and regular symbolic links

VFS inode operation Fast symbolic link Regular symbolic link

readlink generic_readlink() generic_readlink()

follow_link ext2_follow_link() page_follow_link_light()

put_link NULL page_put_link()

setxattr generic_setxattr() generic_setxattr()

getxattr generic_getxattr() generic_getxattr()

listxattr ext2_listxattr() ext2_listxattr()

removexattr generic_removexattr() generic_removexattr()

Table 18-8. Ext2 inode operations for regular files and directories (continued)

VFS inode operation Regular file Directory
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to many filesystems. The addresses of these methods are stored in the ext2_file_
operations table.

Notice that the Ext2’s read and write methods are implemented by the generic_
file_read( ) and generic_file_write( ) functions, respectively. These are described
in the sections “Reading from a File” and “Writing to a File” in Chapter 16.

Managing Ext2 Disk Space
The storage of a file on disk differs from the view the programmer has of the file in
two ways: blocks can be scattered around the disk (although the filesystem tries hard
to keep blocks sequential to improve access time), and files may appear to a pro-
grammer to be bigger than they really are because a program can introduce holes
into them (through the lseek( ) system call).

In this section, we explain how the Ext2 filesystem manages the disk space—how it
allocates and deallocates inodes and data blocks. Two main problems must be
addressed:

• Space management must make every effort to avoid file fragmentation—the
physical storage of a file in several, small pieces located in non-adjacent disk
blocks. File fragmentation increases the average time of sequential read opera-
tions on the files, because the disk heads must be frequently repositioned during

Table 18-10. Ext2 file operations

VFS file operation Ext2 method

llseek generic_file_llseek( )

read generic_file_read( )

write generic_file_write( )

aio_read generic_file_aio_read()

aio_write generic_file_aio_write()

ioctl ext2_ioctl( )

mmap generic_file_mmap( )

open generic_file_open( )

release ext2_release_file( )

fsync ext2_sync_file( )

readv generic_file_readv()

writev generic_file_writev()

sendfile generic_file_sendfile()
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the read operation.* This problem is similar to the external fragmentation of
RAM discussed in the section “The Buddy System Algorithm” in Chapter 8.

• Space management must be time-efficient; that is, the kernel should be able to
quickly derive from a file offset the corresponding logical block number in the
Ext2 partition. In doing so, the kernel should limit as much as possible the num-
ber of accesses to addressing tables stored on disk, because each such intermedi-
ate access considerably increases the average file access time.

Creating inodes
The ext2_new_inode( ) function creates an Ext2 disk inode, returning the address of
the corresponding inode object (or NULL, in case of failure). The function carefully
selects the block group that contains the new inode; this is done to spread unrelated
directories among different groups and, at the same time, to put files into the same
group as their parent directories. To balance the number of regular files and directo-
ries in a block group, Ext2 introduces a “debt” parameter for every block group.

The function acts on two parameters: the address dir of the inode object that refers
to the directory into which the new inode must be inserted and a mode that indicates
the type of inode being created. The latter argument also includes the MS_SYNCHRONOUS
mount flag (see the section “Mounting a Generic Filesystem” in Chapter 12) that
requires the current process to be suspended until the inode is allocated. The func-
tion performs the following actions:

1. Invokes new_inode( ) to allocate a new VFS inode object; initializes its i_sb field
to the superblock address stored in dir->i_sb, and adds it to the in-use inode list
and to the superblock’s list (see the section “Inode Objects” in Chapter 12).

2. If the new inode is a directory, the function invokes find_group_orlov() to find a
suitable block group for the directory.† This function implements the following
heuristics:

a. Directories having as parent the filesystem root should be spread among all
block groups. Thus, the function searches the block groups looking for a
group having a number of free inodes and a number of free blocks above the
average. If there is no such group, it jumps to step 2c.

b. Nested directories—not having the filesystem root as parent—should be put
in the group of the parent if it satisfies the following rules:

• The group does not contain too many directories

• The group has a sufficient number of free inodes left

* Please note that fragmenting a file across block groups (A Bad Thing) is quite different from the not-yet-
implemented fragmentation of blocks to store many files in one block (A Good Thing).

† The Ext2 filesystem may also be mounted with an option flag that forces the kernel to make use of a simpler,
older allocation strategy, which is implemented by the find_group_dir() function.
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• The group has a small “debt” (the debt of a block group is stored in the
array of counters pointed to by the s_debts field of the ext2_sb_info
descriptor; the debt is increased each time a new directory is added and
decreased each time another type of file is added)

If the parent’s group does not satisfy these rules, it picks the first group that
satisfies them. If no such group exists, it jumps to step 2c.

c. This is the “fallback” rule, to be used if no good group has been found. The
function starts with the block group containing the parent directory and
selects the first block group that has more free inodes than the average num-
ber of free inodes per block group.

3. If the new inode is not a directory, it invokes find_group_other() to allocate it in
a block group having a free inode. This function selects the group by starting
from the one that contains the parent directory and moving farther away from it;
to be precise:

a. Performs a quick logarithmic search starting from the block group that
includes the parent directory dir. The algorithm searches log(n) block
groups, where n is the total number of block groups. The algorithm jumps
further ahead until it finds an available block group—for example, if we call
the number of the starting block group i, the algorithm considers block
groups i mod (n), i+1 mod (n), i+1+2 mod (n), i+1+2+4 mod (n), etc.

b. If the logarithmic search failed in finding a block group with a free inode,
the function performs an exhaustive linear search starting from the block
group that includes the parent directory dir.

4. Invokes read_inode_bitmap( ) to get the inode bitmap of the selected block group
and searches for the first null bit into it, thus obtaining the number of the first
free disk inode.

5. Allocates the disk inode: sets the corresponding bit in the inode bitmap and
marks the buffer containing the bitmap as dirty. Moreover, if the filesystem has
been mounted specifying the MS_SYNCHRONOUS flag (see the section “Mounting a
Generic Filesystem” in Chapter 12), the function invokes sync_dirty_buffer( )
to start the I/O write operation and waits until the operation terminates.

6. Decreases the bg_free_inodes_count field of the group descriptor. If the new
inode is a directory, the function increases the bg_used_dirs_count field and
marks the buffer containing the group descriptor as dirty.

7. Increases or decreases the group’s counter in the s_debts array of the super-
block, according to whether the inode refers to a regular file or a directory.

8. Decreases the s_freeinodes_counter field of the ext2_sb_info data structure;
moreover, if the new inode is a directory, it increases the s_dirs_counter field in
the ext2_sb_info data structure.

9. Sets the s_dirt flag of the superblock to 1, and marks the buffer that contains it
to as dirty.
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10. Sets the s_dirt field of the VFS’s superblock object to 1.

11. Initializes the fields of the inode object. In particular, it sets the inode number i_
no and copies the value of xtime.tv_sec into i_atime, i_mtime, and i_ctime. Also
loads the i_block_group field in the ext2_inode_info structure with the block
group index. Refer to Table 18-3 for the meaning of these fields.

12. Initializes the ACLs of the inode.

13. Inserts the new inode object into the hash table inode_hashtable and invokes
mark_inode_dirty( ) to move the inode object into the superblock’s dirty inode
list (see the section “Inode Objects” in Chapter 12).

14. Invokes ext2_preread_inode() to read from disk the block containing the inode
and to put the block in the page cache. This type of read-ahead is done because
it is likely that a recently created inode will be written back soon.

15. Returns the address of the new inode object.

Deleting inodes
The ext2_free_inode( ) function deletes a disk inode, which is identified by an inode
object whose address inode is passed as the parameter. The kernel should invoke the
function after a series of cleanup operations involving internal data structures and
the data in the file itself. It should come after the inode object has been removed
from the inode hash table, after the last hard link referring to that inode has been
deleted from the proper directory and after the file is truncated to 0 length to reclaim
all its data blocks (see the section “Releasing a Data Block” later in this chapter). It
performs the following actions:

1. Invokes clear_inode( ), which in turn executes the following operations:

a. Removes any dirty “indirect” buffer associated with the inode (see the later
section “Data Blocks Addressing”); they are collected in the list headed at
the private_list field of the address_space object inode->i_data (see the
section “The address_space Object” in Chapter 15).

b. If the I_LOCK flag of the inode is set, some of the inode’s buffers are involved
in I/O data transfers; the function suspends the current process until these I/
O data transfers terminate.

c. Invokes the clear_inode method of the superblock object, if defined; the
Ext2 filesystem does not define it.

d. If the inode refers to a device file, it removes the inode object from the
device’s list of inodes; this list is rooted either in the list field of the cdev
character device descriptor (see the section “Character Device Drivers” in
Chapter 13) or in the bd_inodes field of the block_device block device
descriptor (see the section “Block Devices” in Chapter 14).

e. Sets the state of the inode to I_CLEAR (the inode object contents are no
longer meaningful).
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2. Computes the index of the block group containing the disk inode from the inode
number and the number of inodes in each block group.

3. Invokes read_inode_bitmap( ) to get the inode bitmap.

4. Increases the bg_free_inodes_count() field of the group descriptor. If the deleted
inode is a directory, it decreases the bg_used_dirs_count field. Marks the buffer
that contains the group descriptor as dirty.

5. If the deleted inode is a directory, it decreases the s_dirs_counter field in the
ext2_sb_info data structure, sets the s_dirt flag of the superblock to 1, and
marks the buffer that contains it as dirty.

6. Clears the bit corresponding to the disk inode in the inode bitmap and marks the
buffer that contains the bitmap as dirty. Moreover, if the filesystem has been
mounted with the MS_SYNCHRONIZE flag, it invokes sync_dirty_buffer( ) to wait
until the write operation on the bitmap’s buffer terminates.

Data Blocks Addressing
Each nonempty regular file consists of a group of data blocks. Such blocks may be
referred to either by their relative position inside the file —their file block number—
or by their position inside the disk partition—their logical block number (see the sec-
tion “Block Devices Handling” in Chapter 14).

Deriving the logical block number of the corresponding data block from an offset f
inside a file is a two-step process:

1. Derive from the offset f the file block number—the index of the block that con-
tains the character at offset f.

2. Translate the file block number to the corresponding logical block number.

Because Unix files do not include any control characters, it is quite easy to derive the
file block number containing the f th character of a file: simply take the quotient of f
and the filesystem’s block size and round down to the nearest integer.

For instance, let’s assume a block size of 4 KB. If f is smaller than 4,096, the charac-
ter is contained in the first data block of the file, which has file block number 0. If f is
equal to or greater than 4,096 and less than 8,192, the character is contained in the
data block that has file block number 1, and so on.

This is fine as far as file block numbers are concerned. However, translating a file
block number into the corresponding logical block number is not nearly as straight-
forward, because the data blocks of an Ext2 file are not necessarily adjacent on disk.

The Ext2 filesystem must therefore provide a method to store the connection
between each file block number and the corresponding logical block number on
disk. This mapping, which goes back to early versions of Unix from AT&T, is imple-
mented partly inside the inode. It also involves some specialized blocks that contain
extra pointers, which are an inode extension used to handle large files.
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The i_block field in the disk inode is an array of EXT2_N_BLOCKS components that con-
tain logical block numbers. In the following discussion, we assume that EXT2_N_
BLOCKS has the default value, namely 15. The array represents the initial part of a
larger data structure, which is illustrated in Figure 18-5. As can be seen in the figure,
the 15 components of the array are of 4 different types:

• The first 12 components yield the logical block numbers corresponding to the
first 12 blocks of the file—to the blocks that have file block numbers from 0 to 11.

• The component at index 12 contains the logical block number of a block, called
indirect block, that represents a second-order array of logical block numbers.
They correspond to the file block numbers ranging from 12 to b/4+11, where b
is the filesystem’s block size (each logical block number is stored in 4 bytes, so
we divide by 4 in the formula). Therefore, the kernel must look in this compo-
nent for a pointer to a block, and then look in that block for another pointer to
the ultimate block that contains the file contents.

• The component at index 13 contains the logical block number of an indirect
block containing a second-order array of logical block numbers; in turn, the
entries of this second-order array point to third-order arrays, which store the log-
ical block numbers that correspond to the file block numbers ranging from b/
4+12 to (b/4)2+(b/4)+11.

• Finally, the component at index 14 uses triple indirection: the fourth-order
arrays store the logical block numbers corresponding to the file block numbers
ranging from (b/4)2+(b/4)+12 to (b/4)3+(b/4)2+(b/4)+11.

In Figure 18-5, the number inside a block represents the corresponding file block num-
ber. The arrows, which represent logical block numbers stored in array components,

Figure 18-5. Data structures used to address the file’s data blocks
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show how the kernel finds its way through indirect blocks to reach the block that con-
tains the actual contents of the file.

Notice how this mechanism favors small files. If the file does not require more than
12 data blocks, every data can be retrieved in two disk accesses: one to read a com-
ponent in the i_block array of the disk inode and the other to read the requested data
block. For larger files, however, three or even four consecutive disk accesses may be
needed to access the required block. In practice, this is a worst-case estimate,
because dentry, inode, and page caches contribute significantly to reduce the num-
ber of real disk accesses.

Notice also how the block size of the filesystem affects the addressing mechanism,
because a larger block size allows the Ext2 to store more logical block numbers
inside a single block. Table 18-11 shows the upper limit placed on a file’s size for
each block size and each addressing mode. For instance, if the block size is 1,024
bytes and the file contains up to 268 kilobytes of data, the first 12 KB of a file can be
accessed through direct mapping and the remaining 13–268 KB can be addressed
through simple indirection. Files larger than 2 GB must be opened on 32-bit architec-
tures by specifying the O_LARGEFILE opening flag.

File Holes
A file hole is a portion of a regular file that contains null characters and is not stored
in any data block on disk. Holes are a long-standing feature of Unix files. For
instance, the following Unix command creates a file in which the first bytes are a
hole:

$ echo -n "X" | dd of=/tmp/hole bs=1024 seek=6

Now /tmp/hole has 6,145 characters (6,144 null characters plus an X character), yet
the file occupies just one data block on disk.

File holes were introduced to avoid wasting disk space. They are used extensively by
database applications and, more generally, by all applications that perform hashing
on files.

The Ext2 implementation of file holes is based on dynamic data block allocation: a
block is actually assigned to a file only when the process needs to write data into it.
The i_size field of each inode defines the size of the file as seen by the program,
including the holes, while the i_blocks field stores the number of data blocks effec-
tively assigned to the file (in units of 512 bytes).

Table 18-11. File-size upper limits for data block addressing

Block size Direct 1-Indirect 2-Indirect 3-Indirect

1,024 12 KB 268 KB 64.26 MB 16.06 GB

2,048 24 KB 1.02 MB 513.02 MB 256.5 GB

4,096 48 KB 4.04 MB 4 GB ~ 4 TB
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In our earlier example of the dd command, suppose the /tmp/hole file was created on
an Ext2 partition that has blocks of size 4,096. The i_size field of the corresponding
disk inode stores the number 6,145, while the i_blocks field stores the number 8
(because each 4,096-byte block includes eight 512-byte blocks). The second element
of the i_block array (corresponding to the block having file block number 1) stores
the logical block number of the allocated block, while all other elements in the array
are null (see Figure 18-6).

Allocating a Data Block
When the kernel has to locate a block holding data for an Ext2 regular file, it invokes
the ext2_get_block( ) function. If the block does not exist, the function automati-
cally allocates the block to the file. Remember that this function may be invoked
every time the kernel issues a read or write operation on an Ext2 regular file (see the
sections “Reading from a File” and “Writing to a File” in Chapter 16); clearly, this
function is invoked only if the affected block is not included in the page cache.

The ext2_get_block() function handles the data structures already described in the
section “Data Blocks Addressing,” and when necessary, invokes the ext2_alloc_
block( ) function to actually search for a free block in the Ext2 partition. If neces-
sary, the function also allocates the blocks used for indirect addressing (see
Figure 18-5).

To reduce file fragmentation, the Ext2 filesystem tries to get a new block for a file
near the last block already allocated for the file. Failing that, the filesystem searches
for a new block in the block group that includes the file’s inode. As a last resort, the
free block is taken from one of the other block groups.

The Ext2 filesystem uses preallocation of data blocks. The file does not get only the
requested block, but rather a group of up to eight adjacent blocks. The i_prealloc_
count field in the ext2_inode_info structure stores the number of data blocks preallo-
cated to a file that are still unused, and the i_prealloc_block field stores the logical

Figure 18-6. A file with an initial hole
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block number of the next preallocated block to be used. All preallocated blocks that
remain unused are freed when the file is closed, when it is truncated, or when a write
operation is not sequential with respect to the write operation that triggered the
block preallocation.

The ext2_alloc_block( ) function receives as its parameters a pointer to an inode
object, a goal, and the address of a variable that will store an error code. The goal is a
logical block number that represents the preferred position of the new block. The ext2_
get_block( ) function sets the goal parameter according to the following heuristic:

1. If the block that is being allocated and the previously allocated block have con-
secutive file block numbers, the goal is the logical block number of the previous
block plus 1; it makes sense that consecutive blocks as seen by a program should
be adjacent on disk.

2. If the first rule does not apply and at least one block has been previously allo-
cated to the file, the goal is one of these blocks’ logical block numbers. More
precisely, it is the logical block number of the already allocated block that pre-
cedes the block to be allocated in the file.

3. If the preceding rules do not apply, the goal is the logical block number of the
first block (not necessarily free) in the block group that contains the file’s inode.

The ext2_alloc_block( ) function checks whether the goal refers to one of the preal-
located blocks of the file. If so, it allocates the corresponding block and returns its
logical block number; otherwise, the function discards all remaining preallocated
blocks and invokes ext2_new_block( ).

This latter function searches for a free block inside the Ext2 partition with the fol-
lowing strategy:

1. If the preferred block passed to ext2_alloc_block( )—the block that is the
goal—is free, the function allocates the block.

2. If the goal is busy, the function checks whether one of the next blocks after the
preferred block is free.

3. If no free block is found in the near vicinity of the preferred block, the function
considers all block groups, starting from the one including the goal. For each
block group, the function does the following:

a. Looks for a group of at least eight adjacent free blocks.

b. If no such group is found, looks for a single free block.

The search ends as soon as a free block is found. Before terminating, the ext2_new_
block( ) function also tries to preallocate up to eight free blocks adjacent to the free
block found and sets the i_prealloc_block and i_prealloc_count fields of the disk
inode to the proper block location and number of blocks.
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Releasing a Data Block
When a process deletes a file or truncates it to 0 length, all its data blocks must be
reclaimed. This is done by ext2_truncate( ), which receives the address of the file’s
inode object as its parameter. The function essentially scans the disk inode’s i_block
array to locate all data blocks and all blocks used for the indirect addressing. These
blocks are then released by repeatedly invoking ext2_free_blocks( ).

The ext2_free_blocks( ) function releases a group of one or more adjacent data
blocks. Besides its use by ext2_truncate( ), the function is invoked mainly when dis-
carding the preallocated blocks of a file (see the earlier section “Allocating a Data
Block”). Its parameters are:

inode
The address of the inode object that describes the file

block
The logical block number of the first block to be released

count
The number of adjacent blocks to be released

The function performs the following actions for each block to be released:

1. Gets the block bitmap of the block group that includes the block to be released

2. Clears the bit in the block bitmap that corresponds to the block to be released
and marks the buffer that contains the bitmap as dirty.

3. Increases the bg_free_blocks_count field in the block group descriptor and
marks the corresponding buffer as dirty.

4. Increases the s_free_blocks_count field of the disk superblock, marks the corre-
sponding buffer as dirty, and sets the s_dirt flag of the superblock object.

5. If the filesystem has been mounted with the MS_SYNCHRONOUS flag set, it invokes
sync_dirty_buffer( ) and waits until the write operation on the bitmap’s buffer
terminates.

The Ext3 Filesystem
In this section we’ll briefly describe the enhanced filesystem that has evolved from
Ext2, named Ext3. The new filesystem has been designed with two simple concepts
in mind:

• To be a journaling filesystem (see the next section)

• To be, as much as possible, compatible with the old Ext2 filesystem

Ext3 achieves both the goals very well. In particular, it is largely based on Ext2, so its
data structures on disk are essentially identical to those of an Ext2 filesystem. As a
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matter of fact, if an Ext3 filesystem has been cleanly unmounted, it can be
remounted as an Ext2 filesystem; conversely, creating a journal of an Ext2 filesystem
and remounting it as an Ext3 filesystem is a simple, fast operation.

Thanks to the compatibility between Ext3 and Ext2, most descriptions in the previ-
ous sections of this chapter apply to Ext3 as well. Therefore, in this section, we focus
on the new feature offered by Ext3—“the journal.”

Journaling Filesystems
As disks became larger, one design choice of traditional Unix filesystems (such as
Ext2) turns out to be inappropriate. As we know from Chapter 14, updates to filesys-
tem blocks might be kept in dynamic memory for long period of time before being
flushed to disk. A dramatic event such as a power-down failure or a system crash
might thus leave the filesystem in an inconsistent state. To overcome this problem,
each traditional Unix filesystem is checked before being mounted; if it has not been
properly unmounted, then a specific program executes an exhaustive, time-consum-
ing check and fixes all the filesystem’s data structures on disk.

For instance, the Ext2 filesystem status is stored in the s_mount_state field of the
superblock on disk. The e2fsck utility program is invoked by the boot script to check
the value stored in this field; if it is not equal to EXT2_VALID_FS, the filesystem was not
properly unmounted, and therefore e2fsck starts checking all disk data structures of
the filesystem.

Clearly, the time spent checking the consistency of a filesystem depends mainly on
the number of files and directories to be examined; therefore, it also depends on the
disk size. Nowadays, with filesystems reaching hundreds of gigabytes, a single con-
sistency check may take hours. The involved downtime is unacceptable for every
production environment or high-availability server.

The goal of a journaling filesystem is to avoid running time-consuming consistency
checks on the whole filesystem by looking instead in a special disk area that contains
the most recent disk write operations named journal. Remounting a journaling file-
system after a system failure is a matter of a few seconds.

The Ext3 Journaling Filesystem
The idea behind Ext3 journaling is to perform each high-level change to the filesys-
tem in two steps. First, a copy of the blocks to be written is stored in the journal;
then, when the I/O data transfer to the journal is completed (in short, data is com-
mitted to the journal), the blocks are written in the filesystem. When the I/O data
transfer to the filesystem terminates (data is committed to the filesystem), the copies
of the blocks in the journal are discarded.
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While recovering after a system failure, the e2fsck program distinguishes the follow-
ing two cases:

The system failure occurred before a commit to the journal. Either the copies of the
blocks relative to the high-level change are missing from the journal or they are
incomplete; in both cases, e2fsck ignores them.

The system failure occurred after a commit to the journal. The copies of the blocks
are valid, and e2fsck writes them into the filesystem.

In the first case, the high-level change to the filesystem is lost, but the filesystem state
is still consistent. In the second case, e2fsck applies the whole high-level change, thus
fixing every inconsistency due to unfinished I/O data transfers into the filesystem.

Don’t expect too much from a journaling filesystem; it ensures consistency only at
the system call level. For instance, a system failure that occurs while you are copying
a large file by issuing several write() system calls will interrupt the copy operation,
thus the duplicated file will be shorter than the original one.

Furthermore, journaling filesystems do not usually copy all blocks into the journal.
In fact, each filesystem consists of two kinds of blocks: those containing the so-called
metadata and those containing regular data. In the case of Ext2 and Ext3, there are
six kinds of metadata: superblocks, group block descriptors, inodes, blocks used for
indirect addressing (indirection blocks), data bitmap blocks, and inode bitmap
blocks. Other filesystems may use different metadata.

Several journaling filesystems, such as SGI’s XFS and IBM’s JFS, limit themselves to
logging the operations affecting metadata. In fact, metadata’s log records are suffi-
cient to restore the consistency of the on-disk filesystem data structures. However,
since operations on blocks of file data are not logged, nothing prevents a system fail-
ure from corrupting the contents of the files.

The Ext3 filesystem, however, can be configured to log the operations affecting both
the filesystem metadata and the data blocks of the files. Because logging every kind
of write operation leads to a significant performance penalty, Ext3 lets the system
administrator decide what has to be logged; in particular, it offers three different
journaling modes:

Journal
All filesystem data and metadata changes are logged into the journal. This mode
minimizes the chance of losing the updates made to each file, but it requires
many additional disk accesses. For example, when a new file is created, all its
data blocks must be duplicated as log records. This is the safest and slowest Ext3
journaling mode.

Ordered
Only changes to filesystem metadata are logged into the journal. However, the
Ext3 filesystem groups metadata and relative data blocks so that data blocks are
written to disk before the metadata. This way, the chance to have data corrup-
tion inside the files is reduced; for instance, each write access that enlarges a file
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is guaranteed to be fully protected by the journal. This is the default Ext3 jour-
naling mode.

Writeback
Only changes to filesystem metadata are logged; this is the method found on the
other journaling filesystems and is the fastest mode.

The journaling mode of the Ext3 filesystem is specified by an option of the mount
system command. For instance, to mount an Ext3 filesystem stored in the /dev/sda2
partition on the /jdisk mount point with the “writeback” mode, the system adminis-
trator can type the command:

# mount -t ext3 -o data=writeback /dev/sda2 /jdisk

The Journaling Block Device Layer
The Ext3 journal is usually stored in a hidden file named .journal located in the root
directory of the filesystem.

The Ext3 filesystem does not handle the journal on its own; rather, it uses a general
kernel layer named Journaling Block Device, or JBD. Right now, only Ext3 uses the
JBD layer, but other filesystems might use it in the future.

The JBD layer is a rather complex piece of software. The Ext3 filesystem invokes the
JBD routines to ensure that its subsequent operations don’t corrupt the disk data
structures in case of system failure. However, JBD typically uses the same disk to log
the changes performed by the Ext3 filesystem, and it is therefore vulnerable to sys-
tem failures as much as Ext3. In other words, JBD must also protect itself from sys-
tem failures that could corrupt the journal.

Therefore, the interaction between Ext3 and JBD is essentially based on three funda-
mental units:

Log record
Describes a single update of a disk block of the journaling filesystem.

Atomic operation handle
Includes log records relative to a single high-level change of the filesystem; typi-
cally, each system call modifying the filesystem gives rise to a single atomic oper-
ation handle.

Transaction
Includes several atomic operation handles whose log records are marked valid
for e2fsck at the same time.

Log records

A log record is essentially the description of a low-level operation that is going to be
issued by the filesystem. In some journaling filesystems, the log record consists of
exactly the span of bytes modified by the operation, together with the starting position
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of the bytes inside the filesystem. The JBD layer, however, uses log records consisting
of the whole buffer modified by the low-level operation. This approach may waste a lot
of journal space (for instance, when the low-level operation just changes the value of a
bit in a bitmap), but it is also much faster because the JBD layer can work directly with
buffers and their buffer heads.

Log records are thus represented inside the journal as normal blocks of data (or
metadata). Each such block, however, is associated with a small tag of type journal_
block_tag_t, which stores the logical block number of the block inside the filesystem
and a few status flags.

Later, whenever a buffer is being considered by the JBD, either because it belongs to
a log record or because it is a data block that should be flushed to disk before the
corresponding metadata block (in the “ordered” journaling mode), the kernel
attaches a journal_head data structure to the buffer head. In this case, the b_private
field of the buffer head stores the address of the journal_head data structure and the
BH_JBD flag is set (see the section “Block Buffers and Buffer Heads” in Chapter 15).

Atomic operation handles

Every system call modifying the filesystem is usually split into a series of low-level
operations that manipulate disk data structures.

For instance, suppose that Ext3 must satisfy a user request to append a block of data
to a regular file. The filesystem layer must determine the last block of the file, locate
a free block in the filesystem, update the data block bitmap inside the proper block
group, store the logical number of the new block either in the file’s inode or in an
indirect addressing block, write the contents of the new block, and finally, update
several fields of the inode. As you see, the append operation translates into many
lower-level operations on the data and metadata blocks of the filesystem.

Now, just imagine what could happen if a system failure occurred in the middle of
an append operation, when some of the lower-level manipulations have already been
executed while others have not. Of course, the scenario could be even worse, with
high-level operations affecting two or more files (for example, moving a file from one
directory to another).

To prevent data corruption, the Ext3 filesystem must ensure that each system call is
handled in an atomic way. An atomic operation handle is a set of low-level opera-
tions on the disk data structures that correspond to a single high-level operation.
When recovering from a system failure, the filesystem ensures that either the whole
high-level operation is applied or none of its low-level operations is.

Each atomic operation handle is represented by a descriptor of type handle_t. To
start an atomic operation, the Ext3 filesystem invokes the journal_start() JBD func-
tion, which allocates, if necessary, a new atomic operation handle and inserts it into
the current transactions (see the next section). Because every low-level operation on
the disk might suspend the process, the address of the active handle is stored in the
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journal_info field of the process descriptor. To notify that an atomic operation is
completed, the Ext3 filesystem invokes the journal_stop() function.

Transactions

For reasons of efficiency, the JBD layer manages the journal by grouping the log
records that belong to several atomic operation handles into a single transaction. Fur-
thermore, all log records relative to a handle must be included in the same transaction.

All log records of a transaction are stored in consecutive blocks of the journal. The
JBD layer handles each transaction as a whole. For instance, it reclaims the blocks
used by a transaction only after all data included in its log records is committed to
the filesystem.

As soon as it is created, a transaction may accept log records of new handles. The
transaction stops accepting new handles when either of the following occurs:

• A fixed amount of time has elapsed, typically 5 seconds.

• There are no free blocks in the journal left for a new handle.

A transaction is represented by a descriptor of type transaction_t. The most impor-
tant field is t_state, which describes the current status of the transaction.

Essentially, a transaction can be:

Complete
All log records included in the transaction have been physically written onto the
journal. When recovering from a system failure, e2fsck considers every complete
transaction of the journal and writes the corresponding blocks into the filesys-
tem. In this case, the t_state field stores the value T_FINISHED.

Incomplete
At least one log record included in the transaction has not yet been physically
written to the journal, or new log records are still being added to the transac-
tion. In case of system failure, the image of the transaction stored in the journal
is likely not up-to-date. Therefore, when recovering from a system failure, e2fsck
does not trust the incomplete transactions in the journal and skips them. In this
case, the t_state field stores one of the following values:

T_RUNNING
Still accepting new atomic operation handles.

T_LOCKED
Not accepting new atomic operation handles, but some of them are still
unfinished.

T_FLUSH
All atomic operation handles have finished, but some log records are still
being written to the journal.
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T_COMMIT
All log records of the atomic operation handles have been written to disk,
but the transaction has yet to be marked as completed on the journal.

At any time the journal may include several transactions, but only one of them is in
the T_RUNNING state—it is the active transaction that is accepting the new atomic
operation handle requests issued by the Ext3 filesystem.

Several transactions in the journal might be incomplete, because the buffers contain-
ing the relative log records have not yet been written to the journal.

If a transaction is complete, all its log records have been written to the journal but
some of the corresponding buffers have yet to be written onto the filesystem. A com-
plete transaction is deleted from the journal when the JBD layer verifies that all buff-
ers described by the log records have been successfully written onto the Ext3
filesystem.

How Journaling Works
Let’s try to explain how journaling works with an example: the Ext3 filesystem layer
receives a request to write some data blocks of a regular file.

As you might easily guess, we are not going to describe in detail every single opera-
tion of the Ext3 filesystem layer and of the JBD layer. There would be far too many
issues to be covered! However, we describe the essential actions:

1. The service routine of the write() system call triggers the write method of the
file object associated with the Ext3 regular file. For Ext3, this method is imple-
mented by the generic_file_write() function, already described in the section
“Writing to a File” in Chapter 16.

2. The generic_file_write() function invokes the prepare_write method of the
address_space object several times, once for every page of data involved by the
write operation. For Ext3, this method is implemented by the ext3_prepare_
write() function.

3. The ext3_prepare_write() function starts a new atomic operation by invoking
the journal_start() JBD function. The handle is added to the active transac-
tion. Actually, the atomic operation handle is created only when executing the
first invocation of the journal_start() function. Following invocations verify
that the journal_info field of the process descriptor is already set and use the ref-
erenced handle.

4. The ext3_prepare_write() function invokes the block_prepare_write() function
already described in Chapter 16, passing to it the address of the ext3_get_block()
function. Remember that block_prepare_write() takes care of preparing the buff-
ers and the buffer heads of the file’s page.
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5. When the kernel must determine the logical number of a block of the Ext3 file-
system, it executes the ext3_get_block() function. This function is actually simi-
lar to ext2_get_block(), which is described in the earlier section “Allocating a
Data Block.” A crucial difference, however, is that the Ext3 filesystem invokes
functions of the JBD layer to ensure that the low-level operations are logged:

• Before issuing a low-level write operation on a metadata block of the filesys-
tem, the function invokes journal_get_write_access(). Basically, this latter
function adds the metadata buffer to a list of the active transaction. How-
ever, it must also check whether the metadata is included in an older incom-
plete transaction of the journal; in this case, it duplicates the buffer to make
sure that the older transactions are committed with the old content.

• After updating the buffer containing the metadata block, the Ext3 filesystem
invokes journal_dirty_metadata() to move the metadata buffer to the
proper dirty list of the active transaction and to log the operation in the
journal.

Notice that metadata buffers handled by the JBD layer are not usually included
in the dirty lists of buffers of the inode, so they are not written to disk by the
normal disk cache flushing mechanisms described in Chapter 15.

6. If the Ext3 filesystem has been mounted in “journal” mode, the ext3_prepare_
write() function also invokes journal_get_write_access() on every buffer
touched by the write operation.

7. Control returns to the generic_file_write() function, which updates the page
with the data stored in the User Mode address space and then invokes the
commit_write method of the address_space object. For Ext3, the function that
implements this method depends on how the Ext3 filesystem has been mounted:

• If the Ext3 filesystem has been mounted in “journal” mode, the commit_
write method is implemented by the ext3_journalled_commit_write() func-
tion, which invokes journal_dirty_metadata() on every buffer of data (not
metadata) in the page. This way, the buffer is included in the proper dirty
list of the active transaction and not in the dirty list of the owner inode;
moreover, the corresponding log records are written to the journal. Finally,
ext3_journalled_commit_write() invokes journal_stop() to notify the JBD
layer that the atomic operation handle is closed.

• If the Ext3 filesystem has been mounted in “ordered” mode, the commit_
write method is implemented by the ext3_ordered_commit_write() func-
tion, which invokes the journal_dirty_data() function on every buffer of
data in the page to insert the buffer in a proper list of the active transac-
tions. The JBD layer ensures that all buffers in this list are written to disk
before the metadata buffers of the transaction. No log record is written onto
the journal. Next, ext3_ordered_commit_write() executes the normal
generic_commit_write() function described in Chapter 15, which inserts the
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data buffers in the list of the dirty buffers of the owner inode. Finally, ext3_
ordered_commit_write() invokes journal_stop() to notify the JBD layer that
the atomic operation handle is closed.

• If the Ext3 filesystem has been mounted in “writeback” mode, the commit_
write method is implemented by the ext3_writeback_commit_write() func-
tion, which executes the normal generic_commit_write() function described
in Chapter 15, which inserts the data buffers in the list of the dirty buffers of
the owner inode. Then, ext3_writeback_commit_write() invokes journal_
stop() to notify the JBD layer that the atomic operation handle is closed.

8. The service routine of the write() system call terminates here. However, the JBD
layer has not finished its work. Eventually, our transaction becomes complete
when all its log records have been physically written to the journal. Then
journal_commit_transaction() is executed.

9. If the Ext3 filesystem has been mounted in “ordered” mode, the journal_commit_
transaction() function activates the I/O data transfers for all data buffers
included in the list of the transaction and waits until all data transfers terminate.

10. The journal_commit_transaction() function activates the I/O data transfers for
all metadata buffers included in the transaction (and also for all data buffers, if
Ext3 was mounted in “journal” mode).

11. Periodically, the kernel activates a checkpoint activity for every complete transac-
tion in the journal. The checkpoint basically involves verifying whether the I/O
data transfers triggered by journal_commit_transaction() have successfully termi-
nated. If so, the transaction can be deleted from the journal.

Of course, the log records in the journal never play an active role until a system fail-
ure occurs. Only during system reboot does the e2fsck utility program scan the jour-
nal stored in the filesystem and reschedule all write operations described by the log
records of the complete transactions.


