
Chapter 9

The File system

This chapter describes how the Linux kernel maintains the files in the file
systems that it supports. It describes the Virtual File System (VFS) and
explains how the Linux kernel’s real file systems are supported.

One of the most important features of Linux is its support for many different file
systems. This makes it very flexible and well able to coexist with many other op-
erating systems. At the time of writing, Linux supports 15 file systems; ext, ext2,
xia, minix, umsdos, msdos, vfat, proc, smb, ncp, iso9660, sysv, hpfs, affs and
ufs, and no doubt, over time more will be added.

In Linux, as it is for UnixTM, the separate file systems the system may use are not
accessed by device identifiers (such as a drive number or a drive name) but instead
they are combined into a single hierarchical tree structure that represents the file
system as one whole single entity. Linux adds each new file system into this single
file system tree as it is mounted. All file systems, of whatever type, are mounted onto
a directory and the files of the mounted file system cover up the existing contents
of that directory. This directory is known as the mount directory or mount point.
When the file system is unmounted, the mount directory’s own files are once again
revealed.

When disks are initialized (using fdisk, say) they have a partition structure imposed
on them that divides the physical disk into a number of logical partitions. Each
partition may hold a single file system, for example an EXT2 file system. File systems
organize files into logical hierarchical structures with directories, soft links and so on
held in blocks on physical devices. Devices that can contain file systems are known
as block devices. The IDE disk partition /dev/hda1, the first partition of the first
IDE disk drive in the system, is a block device. The Linux file systems regard these

99

100 Chapter 9. The File system

block devices as simply linear collections of blocks, they do not know or care about
the underlying physical disk’s geometry. It is the task of each block device driver to
map a request to read a particular block of its device into terms meaningful to its
device; the particular track, sector and cylinder of its hard disk where the block is
kept. A file system has to look, feel and operate in the same way no matter what
device is holding it. Moreover, using Linux’s file systems, it does not matter (at least
to the system user) that these different file systems are on different physical media
controlled by different hardware controllers. The file system might not even be on
the local system, it could just as well be a disk remotely mounted over a network
link. Consider the following example where a Linux system has its root file system
on a SCSI disk:

A E boot etc lib opt tmp usr

C F cdrom fd proc root var sbin

D bin dev home mnt lost+found

Neither the users nor the programs that operate on the files themselves need know
that /C is in fact a mounted VFAT file system that is on the first IDE disk in the
system. In the example (which is actually my home Linux system), /E is the master
IDE disk on the second IDE controller. It does not matter either that the first IDE
controller is a PCI controller and that the second is an ISA controller which also
controls the IDE CDROM. I can dial into the network where I work using a modem
and the PPP network protocol using a modem and in this case I can remotely mount
my Alpha AXP Linux system’s file systems on /mnt/remote.

The files in a file system are collections of data; the file holding the sources to this
chapter is an ASCII file called filesystems.tex. A file system not only holds the
data that is contained within the files of the file system but also the structure of
the file system. It holds all of the information that Linux users and processes see as
files, directories soft links, file protection information and so on. Moreover it must
hold that information safely and securely, the basic integrity of the operating system
depends on its file systems. Nobody would use an operating system that randomly
lost data and files1.

Minix, the first file system that Linux had is rather restrictive and lacking in per-
formance. Its filenames cannot be longer than 14 characters (which is still better
than 8.3 filenames) and the maximum file size is 64MBytes. 64Mbytes might at
first glance seem large enough but large file sizes are necessary to hold even modest
databases. The first file system designed specifically for Linux, the Extended File
system, or EXT, was introduced in April 1992 and cured a lot of the problems but it
was still felt to lack performance. So, in 1993, the Second Extended File system,
or EXT2, was added. It is this file system that is described in detail later on in this
chapter.

An important development took place when the EXT file system was added into
Linux. The real file systems were separated from the operating system and system
services by an interface layer known as the Virtual File system, or VFS. VFS allows
Linux to support many, often very different, file systems, each presenting a common
software interface to the VFS. All of the details of the Linux file systems are translated
by software so that all file systems appear identical to the rest of the Linux kernel

1Well, not knowingly, although I have been bitten by operating systems with more lawyers than

Linux has developers

9.1. The Second Extended File system (EXT2) 101

Data
Blocks

Block

Group N-1

Block

Group 0

Block

Group N

Block
Bitmap

Group
Descriptors

Super
Block

Inode
Table

Inode
Bitmap

Figure 9.1: Physical Layout of the EXT2 File system

and to programs running in the system. Linux’s Virtual File system layer allows you
to transparently mount the many different file systems at the same time.

The Linux Virtual File system is implemented so that access to its files is as fast and
efficient as possible. It must also make sure that the files and their data are kept
correctly. These two requirements can be at odds with each other. The Linux VFS
caches information in memory from each file system as it is mounted and used. A
lot of care must be taken to update the file system correctly as data within these
caches is modified as files and directories are created, written to and deleted. If you
could see the file system’s data structures within the running kernel, you would be
able to see data blocks being read and written by the file system. Data structures,
describing the files and directories being accessed would be created and destroyed
and all the time the device drivers would be working away, fetching and saving data.
The most important of these caches is the Buffer Cache, which is integrated into
the way that the individual file systems access their underlying block devices. As
blocks are accessed they are put into the Buffer Cache and kept on various queues
depending on their states. The Buffer Cache not only caches data buffers, it also
helps manage the asynchronous interface with the block device drivers.

9.1 The Second Extended File system (EXT2)

The Second Extended File system was devised (by Rémy Card) as an extensible and
powerful file system for Linux. It is also the most successful file system so far in the
Linux community and is the basis for all of the currently shipping Linux distributions.
The EXT2 file system, like a lot of the file systems, is built on the premise that the See

fs/ext2/*
data held in files is kept in data blocks. These data blocks are all of the same length
and, although that length can vary between different EXT2 file systems the block
size of a particular EXT2 file system is set when it is created (using mke2fs). Every
file’s size is rounded up to an integral number of blocks. If the block size is 1024
bytes, then a file of 1025 bytes will occupy two 1024 byte blocks. Unfortunately this
means that on average you waste half a block per file. Usually in computing you
trade off CPU usage for memory and disk space utilisation. In this case Linux, along
with most operating systems, trades off a relatively inefficient disk usage in order to
reduce the workload on the CPU. Not all of the blocks in the file system hold data,
some must be used to contain the information that describes the structure of the file
system. EXT2 defines the file system topology by describing each file in the system
with an inode data structure. An inode describes which blocks the data within a

102 Chapter 9. The File system

Data

Data

Data

Data

Data

Data

Data

Data

Direct Blocks

Double Indirect

Mode

Size

Timestamps

Indirect blocks

Triple Indirect

Owner info

ext2_inode

Figure 9.2: EXT2 Inode

file occupies as well as the access rights of the file, the file’s modification times and
the type of the file. Every file in the EXT2 file system is described by a single inode
and each inode has a single unique number identifying it. The inodes for the file
system are all kept together in inode tables. EXT2 directories are simply special
files (themselves described by inodes) which contain pointers to the inodes of their
directory entries.

Figure 9.1 shows the layout of the EXT2 file system as occupying a series of blocks in
a block structured device. So far as each file system is concerned, block devices are
just a series of blocks that can be read and written. A file system does not need to
concern itself with where on the physical media a block should be put, that is the job
of the device’s driver. Whenever a file system needs to read information or data from
the block device containing it, it requests that its supporting device driver reads an
integral number of blocks. The EXT2 file system divides the logical partition that
it occupies into Block Groups. Each group duplicates information critical to the
integrity of the file system as well as holding real files and directories as blocks of
information and data. This duplication is neccessary should a disaster occur and the
file system need recovering. The subsections describe in more detail the contents of
each Block Group.

9.1.1 The EXT2 Inode

In the EXT2 file system, the inode is the basic building block; every file and directory
in the file system is described by one and only one inode. The EXT2 inodes for
each Block Group are kept in the inode table together with a bitmap that allows
the system to keep track of allocated and unallocated inodes. Figure 9.2 shows the
format of an EXT2 inode, amongst other information, it contains the following fields:See

include/linux/-

ext2 fs i.h

file:/usr/src/linux/include/linux/ext2_fs_i.h
file:/usr/src/linux/include/linux/ext2_fs_i.h

9.1. The Second Extended File system (EXT2) 103

mode This holds two pieces of information; what this inode describes and the per-
missions that users have to it. For EXT2, an inode can describe one of file,
directory, symbolic link, block device, character device or FIFO.

Owner Information The user and group identifiers of the owners of this file or
directory. This allows the file system to correctly allow the right sort of accesses,

Size The size of the file in bytes,

Timestamps The time that the inode was created and the last time that it was
modified,

Datablocks Pointers to the blocks that contain the data that this inode is describ-
ing. The first twelve are pointers to the physical blocks containing the data
described by this inode and the last three pointers contain more and more lev-
els of indirection. For example, the double indirect blocks pointer points at a
block of pointers to blocks of pointers to data blocks. This means that files less
than or equal to twelve data blocks in length are more quickly accessed than
larger files.

You should note that EXT2 inodes can describe special device files. These are not
real files but handles that programs can use to access devices. All of the device files
in /dev are there to allow programs to access Linux’s devices. For example the mount

program takes as an argument the device file that it wishes to mount.

9.1.2 The EXT2 Superblock

The Superblock contains a description of the basic size and shape of this file system.
The information within it allows the file system manager to use and maintain the file
system. Usually only the Superblock in Block Group 0 is read when the file system
is mounted but each Block Group contains a duplicate copy in case of file system
corruption. Amongst other information it holds the:

See

include/linux/-

ext2 fs sb.h

Magic Number This allows the mounting software to check that this is indeed the
Superblock for an EXT2 file system. For the current version of EXT2 this is
0xEF53.

Revision Level The major and minor revision levels allow the mounting code to de-
termine whether or not this file system supports features that are only available
in particular revisions of the file system. There are also feature compatibility
fields which help the mounting code to determine which new features can safely
be used on this file system,

Mount Count and Maximum Mount Count Together these allow the system
to determine if the file system should be fully checked. The mount count
is incremented each time the file system is mounted and when it equals the
maximum mount count the warning message “maximal mount count reached,
running e2fsck is recommended” is displayed,

Block Group Number The Block Group number that holds this copy of the Su-
perblock,

Block Size The size of the block for this file system in bytes, for example 1024
bytes,

file:/usr/src/linux/include/linux/ext2_fs_sb.h
file:/usr/src/linux/include/linux/ext2_fs_sb.h

104 Chapter 9. The File system

Blocks per Group The number of blocks in a group. Like the block size this is
fixed when the file system is created,

Free Blocks The number of free blocks in the file system,

Free Inodes The number of free Inodes in the file system,

First Inode This is the inode number of the first inode in the file system. The
first inode in an EXT2 root file system would be the directory entry for the ’/’
directory.

9.1.3 The EXT2 Group Descriptor

Each Block Group has a data structure describing it. Like the Superblock, all the
group descriptors for all of the Block Groups are duplicated in each Block Group
in case of file system corruption. Each Group Descriptor contains the following

See

ext2 group desc

in include/-

linux/ext2 fs.h information:

Blocks Bitmap The block number of the block allocation bitmap for this Block
Group. This is used during block allocation and deallocation,

Inode Bitmap The block number of the inode allocation bitmap for this Block
Group. This is used during inode allocation and deallocation,

Inode Table The block number of the starting block for the inode table for this
Block Group. Each inode is represented by the EXT2 inode data structure
described below.

Free blocks count, Free Inodes count, Used directory count

The group descriptors are placed on after another and together they make the group
descriptor table. Each Blocks Group contains the entire table of group descriptors
after its copy of the Superblock. Only the first copy (in Block Group 0) is actually
used by the EXT2 file system. The other copies are there, like the copies of the
Superblock, in case the main copy is corrupted.

9.1.4 EXT2 Directories

In the EXT2 file system, directories are special files that are used to create and hold
access paths to the files in the file system. Figure 9.3 shows the layout of a directory
entry in memory. A directory file is a list of directory entries, each one containing

See

ext2 dir entry

in include/-

linux/ext2 fs.h the following information:

inode The inode for this directory entry. This is an index into the array of inodes
held in the Inode Table of the Block Group. In figure 9.3, the directory entry
for the file called file has a reference to inode number i1,

name length The length of this directory entry in bytes,

name The name of this directory entry.

The first two entries for every directory are always the standard “.” and “..” entries
meaning “this directory” and “the parent directory” respectively.

file:/usr/src/linux/include/linux/ext2_fs.h
file:/usr/src/linux/include/linux/ext2_fs.h
file:/usr/src/linux/include/linux/ext2_fs.h
file:/usr/src/linux/include/linux/ext2_fs.h

9.1. The Second Extended File system (EXT2) 105

i1 15 file i2 40 14 very_long_name5

0 15 55

inode table

Figure 9.3: EXT2 Directory

9.1.5 Finding a File in an EXT2 File System

A Linux filename has the same format as all UnixTM filenames have. It is a series of
directory names separated by forward slashes (“/”) and ending in the file’s name.
One example filename would be /home/rusling/.cshrc where /home and /rusling

are directory names and the file’s name is .cshrc. Like all other UnixTM systems,
Linux does not care about the format of the filename itself; it can be any length and
consist of any of the printable characters. To find the inode representing this file
within an EXT2 file system the system must parse the filename a directory at a time
until we get to the file itself.

The first inode we need is the inode for the root of the file system and we find its
number in the file system’s superblock. To read an EXT2 inode we must look for it
in the inode table of the appropriate Block Group. If, for example, the root inode
number is 42, then we need the 42nd inode from the inode table of Block Group 0.
The root inode is for an EXT2 directory, in other words the mode of the root inode
describes it as a directory and it’s data blocks contain EXT2 directory entries.

home is just one of the many directory entries and this directory entry gives us the
number of the inode describing the /home directory. We have to read this directory
(by first reading its inode and then reading the directory entries from the data
blocks described by its inode) to find the rusling entry which gives us the number
of the inode describing the /home/rusling directory. Finally we read the directory
entries pointed at by the inode describing the /home/rusling directory to find the
inode number of the .cshrc file and from this we get the data blocks containing the
information in the file.

9.1.6 Changing the Size of a File in an EXT2 File System

One common problem with a file system is its tendency to fragment. The blocks that
hold the file’s data get spread all over the file system and this makes sequentially

106 Chapter 9. The File system

accessing the data blocks of a file more and more inefficient the further apart the
data blocks are. The EXT2 file system tries to overcome this by allocating the new
blocks for a file physically close to its current data blocks or at least in the same
Block Group as its current data blocks. Only when this fails does it allocate data
blocks in another Block Group.

Whenever a process attempts to write data into a file the Linux file system checks
to see if the data has gone off the end of the file’s last allocated block. If it has, then
it must allocate a new data block for this file. Until the allocation is complete, the
process cannot run; it must wait for the file system to allocate a new data block and
write the rest of the data to it before it can continue. The first thing that the EXT2
block allocation routines do is to lock the EXT2 Superblock for this file system.
Allocating and deallocating changes fields within the superblock, and the Linux file
system cannot allow more than one process to do this at the same time. If another
process needs to allocate more data blocks, it will have to wait until this process has
finished. Processes waiting for the superblock are suspended, unable to run, until
control of the superblock is relinquished by its current user. Access to the superblock
is granted on a first come, first served basis and once a process has control of the
superblock, it keeps control until it has finished. Having locked the superblock, the
process checks that there are enough free blocks left in this file system. If there are
not enough free blocks, then this attempt to allocate more will fail and the process
will relinquish control of this file system’s superblock.

If there are enough free blocks in the file system, the process tries to allocate one.
If the EXT2 file system has been built to preallocate data blocks then we may

See

ext2 new block()

in fs/ext2/-

balloc.c be able to take one of those. The preallocated blocks do not actually exist, they
are just reserved within the allocated block bitmap. The VFS inode representing
the file that we are trying to allocate a new data block for has two EXT2 specific
fields, prealloc block and prealloc count, which are the block number of the first
preallocated data block and how many of them there are, respectively. If there were
no preallocated blocks or block preallocation is not enabled, the EXT2 file system
must allocate a new block. The EXT2 file system first looks to see if the data block
after the last data block in the file is free. Logically, this is the most efficient block
to allocate as it makes sequential accesses much quicker. If this block is not free,
then the search widens and it looks for a data block within 64 blocks of the of the
ideal block. This block, although not ideal is at least fairly close and within the same
Block Group as the other data blocks belonging to this file.

If even that block is not free, the process starts looking in all of the other Block
Groups in turn until it finds some free blocks. The block allocation code looks for a
cluster of eight free data blocks somewhere in one of the Block Groups. If it cannot
find eight together, it will settle for less. If block preallocation is wanted and enabled
it will update prealloc block and prealloc count accordingly.

Wherever it finds the free block, the block allocation code updates the Block Group’s
block bitmap and allocates a data buffer in the buffer cache. That data buffer is
uniquely identified by the file system’s supporting device identifier and the block
number of the allocated block. The data in the buffer is zero’d and the buffer is
marked as “dirty” to show that it’s contents have not been written to the physical
disk. Finally, the superblock itself is marked as “dirty” to show that it has been
changed and it is unlocked. If there were any processes waiting for the superblock,
the first one in the queue is allowed to run again and will gain exclusive control of

file:/usr/src/linux/fs/ext2/balloc.c
file:/usr/src/linux/fs/ext2/balloc.c

9.2. The Virtual File System (VFS) 107

Disk
Drivers

Buffer
Cache

Cache
Inode

Cache
Directory

VFS

MINIX EXT2

Figure 9.4: A Logical Diagram of the Virtual File System

the superblock for its file operations. The process’s data is written to the new data
block and, if that data block is filled, the entire process is repeated and another data
block allocated.

9.2 The Virtual File System (VFS)

Figure 9.4 shows the relationship between the Linux kernel’s Virtual File System
and it’s real file systems. The virtual file system must manage all of the different file
systems that are mounted at any given time. To do this it maintains data structures
that describe the whole (virtual) file system and the real, mounted, file systems.
Rather confusingly, the VFS describes the system’s files in terms of superblocks See fs/*

and inodes in much the same way as the EXT2 file system uses superblocks and
inodes. Like the EXT2 inodes, the VFS inodes describe files and directories within
the system; the contents and topology of the Virtual File System. From now on, to
avoid confusion, I will write about VFS inodes and VFS superblocks to distinquish
them from EXT2 inodes and superblocks.

As each file system is initialised, it registers itself with the VFS. This happens as
the operating system initialises itself at system boot time. The real file systems
are either built into the kernel itself or are built as loadable modules. File System
modules are loaded as the system needs them, so, for example, if the VFAT file system
is implemented as a kernel module, then it is only loaded when a VFAT file system
is mounted. When a block device based file system is mounted, and this includes
the root file system, the VFS must read its superblock. Each file system type’s
superblock read routine must work out the file system’s topology and map that
information onto a VFS superblock data structure. The VFS keeps a list of the

108 Chapter 9. The File system

mounted file systems in the system together with their VFS superblocks. Each VFS
superblock contains information and pointers to routines that perform particular
functions. So, for example, the superblock representing a mounted EXT2 file system
contains a pointer to the EXT2 specific inode reading routine. This EXT2 inode
read routine, like all of the file system specific inode read routines, fills out the fields
in a VFS inode. Each VFS superblock contains a pointer to the first VFS inode on
the file system. For the root file system, this is the inode that represents the ‘‘/’’

directory. This mapping of information is very efficient for the EXT2 file system but
moderately less so for other file systems.

As the system’s processes access directories and files, system routines are called that
traverse the VFS inodes in the system. For example, typing ls for a directory or cat

See

fs/inode.c
for a file cause the the Virtual File System to search through the VFS inodes that
represent the file system. As every file and directory on the system is represented
by a VFS inode, then a number of inodes will be being repeatedly accessed. These
inodes are kept in the inode cache which makes access to them quicker. If an inode
is not in the inode cache, then a file system specific routine must be called in order
to read the appropriate inode. The action of reading the inode causes it to be put
into the inode cache and further accesses to the inode keep it in the cache. The less
used VFS inodes get removed from the cache.

All of the Linux file systems use a common buffer cache to cache data buffers from the
underlying devices to help speed up access by all of the file systems to the physical
devices holding the file systems. This buffer cache is independent of the file systemsSee

fs/buffer.c
and is integrated into the mechanisms that the Linux kernel uses to allocate and
read and write data buffers. It has the distinct advantage of making the Linux
file systems independent from the underlying media and from the device drivers that
support them. All block structured devices register themselves with the Linux kernel
and present a uniform, block based, usually asynchronous interface. Even relatively
complex block devices such as SCSI devices do this. As the real file systems read
data from the underlying physical disks, this results in requests to the block device
drivers to read physical blocks from the device that they control. Integrated into this
block device interface is the buffer cache. As blocks are read by the file systems they
are saved in the global buffer cache shared by all of the file systems and the Linux
kernel. Buffers within it are identified by their block number and a unique identifier
for the device that read it. So, if the same data is needed often, it will be retrieved
from the buffer cache rather than read from the disk, which would take somewhat
longer. Some devices support read ahead where data blocks are speculatively read
just in case they are needed.

The VFS also keeps a cache of directory lookups so that the inodes for frequently
used directories can be quickly found. As an experiment, try listing a directory thatSee

fs/dcache.c
you have not listed recently. The first time you list it, you may notice a slight pause
but the second time you list its contents the result is immediate. The directory cache
does not store the inodes for the directories itself; these should be in the inode cache,
the directory cache simply stores the mapping between the full directory names and
their inode numbers.

9.2.1 The VFS Superblock

Every mounted file system is represented by a VFS superblock; amongst other infor-
mation, the VFS superblock contains the:

See

include/linux/-

fs.h

file:/usr/src/linux/fs/inode.c
file:/usr/src/linux/fs/buffer.c
file:/usr/src/linux/fs/dcache.c
file:/usr/src/linux/include/linux/fs.h
file:/usr/src/linux/include/linux/fs.h

9.2. The Virtual File System (VFS) 109

Device This is the device identifier for the block device that this file system is
contained in. For example, /dev/hda1, the first IDE hard disk in the system
has a device identifier of 0x301,

Inode pointers The mounted inode pointer points at the first inode in this file sys-
tem. The covered inode pointer points at the inode representing the directory
that this file system is mounted on. The root file system’s VFS superblock
does not have a covered pointer,

Blocksize The block size in bytes of this file system, for example 1024 bytes,

Superblock operations A pointer to a set of superblock routines for this file sys-
tem. Amongst other things, these routines are used by the VFS to read and
write inodes and superblocks.

File System type A pointer to the mounted file system’s file system type data
structure,

File System specific A pointer to information needed by this file system,

9.2.2 The VFS Inode

Like the EXT2 file system, every file, directory and so on in the VFS is represented
by one and only one VFS inode. The information in each VFS inode is built from

See

include/linux/-

fs.hinformation in the underlying file system by file system specific routines. VFS inodes
exist only in the kernel’s memory and are kept in the VFS inode cache as long as
they are useful to the system. Amongst other information, VFS inodes contain the
following fields:

device This is the device identifer of the device holding the file or whatever that
this VFS inode represents,

inode number This is the number of the inode and is unique within this file system.
The combination of device and inode number is unique within the Virtual File
System,

mode Like EXT2 this field describes what this VFS inode represents as well as
access rights to it,

user ids The owner identifiers,

times The creation, modification and write times,

block size The size of a block for this file in bytes, for example 1024 bytes,

inode operations A pointer to a block of routine addresses. These routines are
specific to the file system and they perform operations for this inode, for ex-
ample, truncate the file that is represented by this inode.

count The number of system components currently using this VFS inode. A count
of zero means that the inode is free to be discarded or reused,

lock This field is used to lock the VFS inode, for example, when it is being read
from the file system,

file:/usr/src/linux/include/linux/fs.h
file:/usr/src/linux/include/linux/fs.h

110 Chapter 9. The File system

file_systems

requires_dev

file_system_type

*read_super()

name

next

"ext2"

requires_dev

file_system_type

*read_super()

name

next

requires_dev

file_system_type

*read_super()

name "iso9660"

next

"proc"

Figure 9.5: Registered File Systems

dirty Indicates whether this VFS inode has been written to, if so the underlying file
system will need modifying,

file system specific information

9.2.3 Registering the File Systems

When you build the Linux kernel you are asked if you want each of the supported
file systems. When the kernel is built, the file system startup code contains calls to
the initialisation routines of all of the built in file systems. Linux file systems may

See sys setup()

in fs/-

filesystems.c also be built as modules and, in this case, they may be demand loaded as they are
needed or loaded by hand using insmod. Whenever a file system module is loaded
it registers itself with the kernel and unregisters itself when it is unloaded. Each
file system’s initialisation routine registers itself with the Virtual File System and is
represented by a file system type data structure which contains the name of the file
system and a pointer to its VFS superblock read routine. Figure 9.5 shows that the
file system type data structures are put into a list pointed at by the file systems

pointer. Each file system type data structure contains the following information:See

file system type

in include/-

linux/fs.h
Superblock read routine This routine is called by the VFS when an instance of

the file system is mounted,

File System name The name of this file system, for example ext2,

Device needed Does this file system need a device to support? Not all file system
need a device to hold them. The /proc file system, for example, does not
require a block device,

You can see which file systems are registered by looking in at /proc/filesystems.
For example:

ext2

nodev proc

iso9660

9.2.4 Mounting a File System

When the superuser attempts to mount a file system, the Linux kernel must first
validate the arguments passed in the system call. Although mount does some basic
checking, it does not know which file systems this kernel has been built to support
or that the proposed mount point actually exists. Consider the following mount

command:

file:/usr/src/linux/fs/filesystems.c
file:/usr/src/linux/fs/filesystems.c
file:/usr/src/linux/include/linux/fs.h
file:/usr/src/linux/include/linux/fs.h

9.2. The Virtual File System (VFS) 111

$ mount -t iso9660 -o ro /dev/cdrom /mnt/cdrom

This mount command will pass the kernel three pieces of information; the name of
the file system, the physical block device that contains the file system and, thirdly,
where in the existing file system topology the new file system is to be mounted.

The first thing that the Virtual File System must do is to find the file system.
To do this it searches through the list of known file systems by looking at each

See do mount()

in

fs/super.cfile system type data structure in the list pointed at by file systems. If it finds

See

get fs type() in

fs/super.c

a matching name it now knows that this file system type is supported by this kernel
and it has the address of the file system specific routine for reading this file system’s
superblock. If it cannot find a matching file system name then all is not lost if the
kernel is built to demand load kernel modules (see Chapter 12). In this case the
kernel will request that the kernel daemon loads the appropriate file system module
before continuing as before.

Next if the physical device passed by mount is not already mounted, it must find the
VFS inode of the directory that is to be the new file system’s mount point. This
VFS inode may be in the inode cache or it might have to be read from the block
device supporting the file system of the mount point. Once the inode has been found
it is checked to see that it is a directory and that there is not already some other
file system mounted there. The same directory cannot be used as a mount point for
more than one file system.

At this point the VFS mount code must allocate a VFS superblock and pass it the
mount information to the superblock read routine for this file system. All of the
system’s VFS superblocks are kept in the super blocks vector of super block data
structures and one must be allocated for this mount. The superblock read routine
must fill out the VFS superblock fields based on information that it reads from the
physical device. For the EXT2 file system this mapping or translation of information
is quite easy, it simply reads the EXT2 superblock and fills out the VFS superblock
from there. For other file systems, such as the MS DOS file system, it is not quite such
an easy task. Whatever the file system, filling out the VFS superblock means that
the file system must read whatever describes it from the block device that supports
it. If the block device cannot be read from or if it does not contain this type of file
system then the mount command will fail.

Each mounted file system is described by a vfsmount data structure; see figure 9.6.
These are queued on a list pointed at by vfsmntlist. Another pointer, vfsmnttail

See

add vfsmnt() in

fs/super.cpoints at the last entry in the list and the mru vfsmnt pointer points at the most
recently used file system. Each vfsmount structure contains the device number of the
block device holding the file system, the directory where this file system is mounted
and a pointer to the VFS superblock allocated when this file system was mounted. In
turn the VFS superblock points at the file system type data structure for this sort
of file system and to the root inode for this file system. This inode is kept resident
in the VFS inode cache all of the time that this file system is loaded.

9.2.5 Finding a File in the Virtual File System

To find the VFS inode of a file in the Virtual File System, VFS must resolve the name
a directory at a time, looking up the VFS inode representing each of the intermediate
directories in the name. Each directory lookup involves calling the file system specific
lookup whose address is held in the VFS inode representing the parent directory. This

file:/usr/src/linux/fs/super.c
file:/usr/src/linux/fs/super.c
file:/usr/src/linux/fs/super.c

112 Chapter 9. The File system

requires_dev

file_system_type

*read_super()

name

next

i_dev
i_ino

vfsmntlist

"ext2"

0x0301

0x0301

0x0301
/dev/hda1
/

vfsmount

mnt_dev
mnt_devname

mnt_sb
mnt_flags

mnt_dirname

next

1024

42

s_dev
s_blocksize

s_covered

s_flags

s_type

s_mounted

super_block
VFS

inode
VFS

Figure 9.6: A Mounted File System

works because we always have the VFS inode of the root of each file system available
and pointed at by the VFS superblock for that system. Each time an inode is looked
up by the real file system it checks the directory cache for the directory. If there is
no entry in the directory cache, the real file system gets the VFS inode either from
the underlying file system or from the inode cache.

9.2.6 Creating a File in the Virtual File System

9.2.7 Unmounting a File System

The workshop manual for my MG usually describes assembly as the reverse of dis-
assembly and the reverse is more or less true for unmounting a file system. A file

See do umount()

in

fs/super.c system cannot be unmounted if something in the system is using one of its files. So,
for example, you cannot umount /mnt/cdrom if a process is using that directory or
any of its children. If anything is using the file system to be unmounted there may be
VFS inodes from it in the VFS inode cache, and the code checks for this by looking
through the list of inodes looking for inodes owned by the device that this file system
occupies. If the VFS superblock for the mounted file system is dirty, that is it has
been modified, then it must be written back to the file system on disk. Once it has
been written to disk, the memory occupied by the VFS superblock is returned to the
kernel’s free pool of memory. Finally the vfsmount data structure for this mount is
unlinked from vfsmntlist and freed.

See

remove vfsmnt()

in

fs/super.c

9.2.8 The VFS Inode Cache

As the mounted file systems are navigated, their VFS inodes are being continually
read and, in some cases, written. The Virtual File System maintains an inode cache
to speed up accesses to all of the mounted file systems. Every time a VFS inode is
read from the inode cache the system saves an access to a physical device.See

fs/inode.c

The VFS inode cache is implmented as a hash table whose entries are pointers to

file:/usr/src/linux/fs/super.c
file:/usr/src/linux/fs/super.c
file:/usr/src/linux/fs/inode.c

9.2. The Virtual File System (VFS) 113

lists of VFS inodes that have the same hash value. The hash value of an inode is
calculated from its inode number and from the device identifier for the underlying
physical device containing the file system. Whenever the Virtual File System needs
to access an inode, it first looks in the VFS inode cache. To find an inode in the
cache, the system first calculates its hash value and then uses it as an index into the
inode hash table. This gives it a pointer to a list of inodes with the same hash value.
It then reads each inode in turn until it finds one with both the same inode number
and the same device identifier as the one that it is searching for.

If it can find the inode in the cache, its count is incremented to show that it has
another user and the file system access continues. Otherwise a free VFS inode must
be found so that the file system can read the inode from memory. VFS has a number
of choices about how to get a free inode. If the system may allocate more VFS inodes
then this is what it does; it allocates kernel pages and breaks them up into new, free,
inodes and puts them into the inode list. All of the system’s VFS inodes are in a
list pointed at by first inode as well as in the inode hash table. If the system
already has all of the inodes that it is allowed to have, it must find an inode that is
a good candidate to be reused. Good candidates are inodes with a usage count of
zero; this indicates that the system is not currently using them. Really important
VFS inodes, for example the root inodes of file systems always have a usage count
greater than zero and so are never candidates for reuse. Once a candidate for reuse
has been located it is cleaned up. The VFS inode might be dirty and in this case it
needs to be written back to the file system or it might be locked and in this case the
system must wait for it to be unlocked before continuing. The candidate VFS inode
must be cleaned up before it can be reused.

However the new VFS inode is found, a file system specific routine must be called
to fill it out from information read from the underlying real file system. Whilst it is
being filled out, the new VFS inode has a usage count of one and is locked so that
nothing else accesses it until it contains valid information.

To get the VFS inode that is actually needed, the file system may need to access
several other inodes. This happens when you read a directory; only the inode for
the final directory is needed but the inodes for the intermediate directories must also
be read. As the VFS inode cache is used and filled up, the less used inodes will be
discarded and the more used inodes will remain in the cache.

9.2.9 The Directory Cache

To speed up accesses to commonly used directories, the VFS maintains a cache of
directory entries. As directories are looked up by the real file systems their details See

fs/dcache.c
are added into the directory cache. The next time the same directory is looked up,
for example to list it or open a file within it, then it will be found in the directory
cache. Only short directory entries (up to 15 characters long) are cached but this
is reasonable as the shorter directory names are the most commonly used ones. For
example, /usr/X11R6/bin is very commonly accessed when the X server is running.

The directory cache consists of a hash table, each entry of which points at a list
of directory cache entries that have the same hash value. The hash function uses
the device number of the device holding the file system and the directory’s name to
calculate the offset, or index, into the hash table. It allows cached directory entries
to be quickly found. It is no use having a cache when lookups within the cache take

file:/usr/src/linux/fs/dcache.c

114 Chapter 9. The File system

b_dev
b_blocknr
b_state
b_count
b_size

b_prev
b_next

b_data

buffer_head

b_dev
b_blocknr
b_state
b_count
b_size

b_prev
b_next

b_data

buffer_headhash_table
b_dev
b_blocknr
b_state
b_count
b_size

b_prev
b_next

b_data

buffer_head

0x0301

0x0301

0x0801

42 17

39

20481024

1024

Figure 9.7: The Buffer Cache

too long to find entries, or even not to find them.

In an effort to keep the caches valid and up to date the VFS keeps lists of Least
Recently Used (LRU) directory cache entries. When a directory entry is first put
into the cache, which is when it is first looked up, it is added onto the end of the first
level LRU list. In a full cache this will displace an existing entry from the front of the
LRU list. As the directory entry is accessed again it is promoted to the back of the
second LRU cache list. Again, this may displace a cached level two directory entry
at the front of the level two LRU cache list. This displacing of entries at the front
of the level one and level two LRU lists is fine. The only reason that entries are at
the front of the lists is that they have not been recently accessed. If they had, they
would be nearer the back of the lists. The entries in the second level LRU cache list
are safer than entries in the level one LRU cache list. This is the intention as these
entries have not only been looked up but also they have been repeatedly referenced.

REVIEW NOTE: Do we need a diagram for this?

9.3 The Buffer Cache

As the mounted file systems are used they generate a lot of requests to the block
devices to read and write data blocks. All block data read and write requests are
given to the device drivers in the form of buffer head data structures via standard
kernel routine calls. These give all of the information that the block device drivers
need; the device identifier uniquely identifies the device and the block number tells
the driver which block to read. All block devices are viewed as linear collections
of blocks of the same size. To speed up access to the physical block devices, Linux
maintains a cache of block buffers. All of the block buffers in the system are kept
somewhere in this buffer cache, even the new, unused buffers. This cache is shared
between all of the physical block devices; at any one time there are many block
buffers in the cache, belonging to any one of the system’s block devices and often in
many different states. If valid data is available from the buffer cache this saves the

9.3. The Buffer Cache 115

system an access to a physical device. Any block buffer that has been used to read
data from a block device or to write data to it goes into the buffer cache. Over time
it may be removed from the cache to make way for a more deserving buffer or it may
remain in the cache as it is frequently accessed.

Block buffers within the cache are uniquely identfied by the owning device identifier
and the block number of the buffer. The buffer cache is composed of two functional
parts. The first part is the lists of free block buffers. There is one list per supported
buffer size and the system’s free block buffers are queued onto these lists when they
are first created or when they have been discarded. The currently supported buffer
sizes are 512, 1024, 2048, 4096 and 8192 bytes. The second functional part is the
cache itself. This is a hash table which is a vector of pointers to chains of buffers
that have the same hash index. The hash index is generated from the owning device
identifier and the block number of the data block. Figure 9.7 shows the hash table
together with a few entries. Block buffers are either in one of the free lists or they
are in the buffer cache. When they are in the buffer cache they are also queued onto
Least Recently Used (LRU) lists. There is an LRU list for each buffer type and these
are used by the system to perform work on buffers of a type, for example, writing
buffers with new data in them out to disk. The buffer’s type reflects its state and
Linux currently supports the following types:

clean Unused, new buffers,

locked Buffers that are locked, waiting to be written,

dirty Dirty buffers. These contain new, valid data, and will be written but so far
have not been scheduled to write,

shared Shared buffers,

unshared Buffers that were once shared but which are now not shared,

Whenever a file system needs to read a buffer from its underlying physical device, it
trys to get a block from the buffer cache. If it cannot get a buffer from the buffer
cache, then it will get a clean one from the appropriate sized free list and this new
buffer will go into the buffer cache. If the buffer that it needed is in the buffer cache,
then it may or may not be up to date. If it is not up to date or if it is a new block
buffer, the file system must request that the device driver read the appropriate block
of data from the disk.

Like all caches, the buffer cache must be maintained so that it runs efficiently and
fairly allocates cache entries between the block devices using the buffer cache. Linux
uses the bdflush kernel daemon to perform a lot of housekeeping duties on the
cache but some happen automatically as a result of the cache being used.

9.3.1 The bdflush Kernel Daemon See bdflush()

in

fs/buffer.c
The bdflush kernel daemon is a simple kernel daemon that provides a dynamic
response to the system having too many dirty buffers; buffers that contain data that
must be written out to disk at some time. It is started as a kernel thread at system
startup time and, rather confusingly, it calls itself “kflushd” and that is the name
that you will see if you use the ps command to show the processes in the system.
Mostly this daemon sleeps waiting for the number of dirty buffers in the system to

file:/usr/src/linux/fs/buffer.c

116 Chapter 9. The File system

grow too large. As buffers are allocated and discarded the number of dirty buffers in
the system is checked. If there are too many as a percentage of the total number of
buffers in the system then bdflush is woken up. The default threshold is 60% but,
if the system is desperate for buffers, bdflush will be woken up anyway. This value
can be seen and changed using the update command:

update -d

bdflush version 1.4

0: 60 Max fraction of LRU list to examine for dirty blocks

1: 500 Max number of dirty blocks to write each time bdflush activated

2: 64 Num of clean buffers to be loaded onto free list by refill_freelist

3: 256 Dirty block threshold for activating bdflush in refill_freelist

4: 15 Percentage of cache to scan for free clusters

5: 3000 Time for data buffers to age before flushing

6: 500 Time for non-data (dir, bitmap, etc) buffers to age before flushing

7: 1884 Time buffer cache load average constant

8: 2 LAV ratio (used to determine threshold for buffer fratricide).

All of the dirty buffers are linked into the BUF DIRTY LRU list whenever they are
made dirty by having data written to them and bdflush tries to write a reasonable
number of them out to their owning disks. Again this number can be seen and
controlled by the update command and the default is 500 (see above).

9.3.2 The update Process

The update command is more than just a command; it is also a daemon. When run
as superuser (during system initialisation) it will periodically flush all of the older
dirty buffers out to disk. It does this by calling a system service routine that does

See

sys bdflush() in

fs/buffer.c more or less the same thing as bdflush. Whenever a dirty buffer is finished with,
it is tagged with the system time that it should be written out to its owning disk.
Every time that update runs it looks at all of the dirty buffers in the system looking
for ones with an expired flush time. Every expired buffer is written out to disk.

9.4 The /proc File System

The /proc file system really shows the power of the Linux Virtual File System. It
does not really exist (yet another of Linux’s conjuring tricks), neither the /proc

directory nor its subdirectories and its files actually exist. So how can you cat

/proc/devices? The /proc file system, like a real file system, registers itself with the
Virtual File System. However, when the VFS makes calls to it requesting inodes as
its files and directories are opened, the /proc file system creates those files and direc-
tories from information within the kernel. For example, the kernel’s /proc/devices
file is generated from the kernel’s data structures describing its devices.

The /proc file system presents a user readable window into the kernel’s inner work-
ings. Several Linux subsystems, such as Linux kernel modules described in chap-
ter 12, create entries in the the /proc file system.

file:/usr/src/linux/fs/buffer.c

9.5. Device Special Files 117

9.5 Device Special Files

Linux, like all versions of UnixTM presents its hardware devices as special files. So,
for example, /dev/null is the null device. A device file does not use any data space in
the file system, it is only an access point to the device driver. The EXT2 file system
and the Linux VFS both implement device files as special types of inode. There are
two types of device file; character and block special files. Within the kernel itself,
the device drivers implement file semantices: you can open them, close them and
so on. Character devices allow I/O operations in character mode and block devices
require that all I/O is via the buffer cache. When an I/O request is made to a device
file, it is forwarded to the appropriate device driver within the system. Often this
is not a real device driver but a pseudo-device driver for some subsystem such as
the SCSI device driver layer. Device files are referenced by a major number, which
identifies the device type, and a minor type, which identifies the unit, or instance
of that major type. For example, the IDE disks on the first IDE controller in the
system have a major number of 3 and the first partition of an IDE disk would have
a minor number of 1. So, ls -l of /dev/hda1 gives:

see

/include/linux/

major.h for all of

Linux’s major

device numbers.$ brw-rw---- 1 root disk 3, 1 Nov 24 15:09 /dev/hda1

Within the kernel, every device is uniquely described by a kdev t data type, this is
two bytes long, the first byte containing the minor device number and the second
byte holding the major device number. The IDE device above is held within the

See

include/linux/-

kdev t.hkernel as 0x0301. An EXT2 inode that represents a block or character device keeps
the device’s major and minor numbers in its first direct block pointer. When it is
read by the VFS, the VFS inode data structure representing it has its i rdev field
set to the correct device identifier.

file:/usr/src/linux/include/linux/kdev_t.h
file:/usr/src/linux/include/linux/kdev_t.h

118 Chapter 9. The File system

