
CIS 3309 Section 4 Comprehensive Lab Project
The primary task is to complete an order entry system for MMA Books. The application needs to query

customers and products data from a database and commit invoices to the database, while maintaining

product inventory levels. The image below shows the form for the project. The form and most of the

form code are completed for you. Your still need to add classes and database code, and the form code

to use them. The form is divided into 3 sections:

1. The Customer section either gets a customer from or adds a customer to the database

2. The Products section shows all the MMA Books products and allows a user to select products

and add a quantity of them to the cart

3. The Cart section shows the products in the care, their sum of unit prices, shipping charge, sales

tax and invoice total, edit or delete products from the cart, clear the cart and submit the invoice

to the database

There is an additional Form, frmEditItem, with most of the code included that allows the UnitPrice and

Quantity to be changed in the cart. The Form below shows that the Unit Price and Quantity can be

changed but Product Code and Item Total cannot. The Item Total is automatically calculated when

either the Unit Price or Quantity are changed.

Note that all the numeric data in the MMABooks database are either integer or decimal.

MMABooksDB class
This class has the GetSqlConnection to get a SQLConnection to the database and a method called

ExecuteNonQuery to execute inserts, updates and deletes from the database. You will need the

following methods.

GetSqlConnection – Gets a SQLConnection to the database using the connection string

ExecuteNonQuery – Accepts a SQLCommand object and a SQLConnection object to call the

SQLCommand’s ExecuteNonQuery method. This will save dozens of lines of code in your insert, update

and delete methods. I suggest coding your InsertCustomer method in the CustomerDB class to check if

it works and cut all code from try-catch-finally to the last return at the end of the method and paste it

into ExecuteNonQuery. Then replace the cut code in InsertCustomer with a call to ExecuteNonQuery in

MMABooksDB.

Customer classes and Customer Form section
You will need to code 2 classes for a Customer:

1. Customer – Contains the data and methods for a customer

2. CustomerDB – Static class that contains methods to get data from or put data into a database

Customer class
The Customer class needs data to contain the fields from the Customers table in the MMABooks

database. Look at the database in Visual Studio C#. You can do this by using the drop and drag

approach used in chapters 18 and 19. Make sure to add all tables from the database to see the fields in

each table. They will tell you the data type and name of each field. I strongly suggest that you name the

data auto-implemented properties in your class with the same names as the Customer’s field names.

This will make coding you CustomerDB class much easier by eliminating any ambiguity of data. Ignore

and foreign keys associated with this table. The Invoices table is not necessary for any Customer

database operations for our problem. After completing your Customer class auto-implemented

properties, code the following:

1. A default constructor

2. A parameterized constructor that accepts and set all Customer data

3. A ToString method to return a string with all the Customer data on one line

CustomerDB class
The CustomerDB class contains methods that allow your application to query a Customer from the

database, insert a Customer into the database and query the max CustomerID from the database. You

will need the following methods.

1. A method GetCustomer that accepts a CustomerID and returns a Customer if the query is

successful and returns a null if the query was not successful.

2. A method InsertCustomer that accepts the data fields for a Customer and inserts the Customer

data into the database. It returns a integer greater than zero if the insert is successful (will

return a 1 because 1 record in the database was affected by the insert, which will be returned by

ExecuteNonQuery), a zero if the record was not inserted into the database (ExecuteNonQuery

will return the zero) and a -1 if an exception is thrown by the insert. You should write a wrapper

method to accept a Customer object and, in the method, breaks the Customer into fields and

calls the InsertCustomer method that accepts the data fields.

3. A method GetMaxID that queries the database and returns the max CustomerID from the

database if the query is successful and -1 if it throws an exception.

Customer Section on Form
After completing the Customer and CustomerDB classes, you should add the code to frmMain Customer

section to test them. Look at the comments in the Customer Section for frmMain. You will see

comments like:

//*****Customer 1. Add code here

This shows the comment for step 1 below. Follow these steps:

1. Enter code in to query a Customer from the database by CustomerID in

btnFindCustomerBy_Click

2. Add condition: If a Customer was found in DB set TextBoxes, Buttons and copy data to

TextBoxes.

3. Add code to copy the data from the Customer to the TextBoxes in the Customer section in

btnFindCustomerBy_Click

4. Add code to instantiate a Customer that uses the parameterized constructor with the data in the

Customer section TextBoxes in btnAddNewCustomer_Click. Put -1 in for CustomerID. The

correct CustomerID will be added after the insert because this field is auto-numbered in the

database

5. Add code to insert the Customer object into the database by calling the wrapper method

InsertCustomer in CustomerDB in the btnAddNewCustomer_Click method

6. Add code to query the max CustomerID from the database in btnAddNewCustomer_Click

Test you Customer section code by querying and adding Customers. Check in your test app that you

used to look at your database to see the Customer added to the Customers table.

Product classes and the Products Form section
You will need 3 classes for Products.

1. Product – Contains the data and methods for a product

2. ProductList – To contain multiple products

3. ProductDB – Static class that contains methods to get data from or put data into a database

Product class
The Product class needs data to contain the fields from the Products table in the MMABooks database.

Look at the database in Visual Studio C# again. Again, I strongly suggest that you name the data fields in

your class with the same names as the Product’s field names. Ignore and foreign keys associated with

this table. The InvoiceLineItems table is not necessary for any Product database operations for our

problem. After completing your Product class auto-implemented properties, code the following:

1. A default constructor

2. A parameterized constructor that accepts and set all Product data

3. A ToString method to return a string with all the Product data on one line

ProductList class
The ProductList class inherits a List of Product and only contains a ToString method.

1. Add the ToString in the ProductList method prints the List of products by calling the Product

ToString method in a loop

ProductDB class
The ProductDB class contains methods that allow your application to query a Product from the

database, insert a Product into the database and query the max CustomerID from the database. You will

need the following methods.

1. A method GetProduct that accepts a ProductCode and returns a Product if the query is

successful and returns a null if the query was not successful.

2. A method GetAllProducts that returns all Products in the Products table in a ProductList if the

query is successful and returns a null if the query was not successful.

3. A method UpdateProduct that accepts the fields of a Product and update them in the

appropriate record in the Products table

4. Add code to insert the Customer object into the database by calling the wrapper method

UpdateProduct in ProductDB

5. A method UpdateOnHandQuantity to update the Products table OnHandQuantity after a

purchase has been made. It accepts a ProductCode (string) and an integer that represents the

number of the product purchased. A negative integer decreases OnHandQuantity and a positive

integer increases it.

Products Section on Form
After completing the Product classes, you should add the code to frmMain Products section to test

them. Look at the comments in the Products Section for frmMain. When the application is run, the

Products in the ListBox should be visible as shown in the frmMain above.

Next, follow these steps:

1. Enter code to load all Products from the database into your application in GetAllProducts.

2. Enter code to copy Products from the List returned in step 1.

3. Enter code to get the selected item in lstProducts and copy it to the class level Product p.

4. Enter code to copy data from selected item to Product TextBoxes and set

txtQuantityToPurchase to empty string

The code for the btnAddToCart_Click event handler will be added later.

OrderOptions classes
The OrderOptions class contains data necessary to complete an order. It contains the sales tax rate, fist

book shipping charge and the charge for additional books. Please look at the OrderOptions table in the

database for field names. You will need two classes:

1. OrderOptions – Contains the three fields described above

2. OrderOptionsDB – Contains code to get the data for OrderOptions from the database

OrderOptions
The OrderOptions class has3 fields from the OrderOptions table in the database. Add the necessary

auto-implemented properties to the class to contain the data from the table. After completing your

OrderOptions class auto-implemented properties, code the following:

1. A default constructor

2. A parameterized constructor that accepts and set all OrderOptions data

3. A ToString method to return a string with all the OrderOptions data on one line

OrderOptionsDB
The OrderOptions class contains methods that allow your application to query OrderOptions from the

database. You will need the following method.

GetOrderOptions – Query OrderOptions from OrderOptions table in database

Invoice classes and the Cart Form section
This is the most challenging task. You create all the code in this class to manage an Invoice, its

InvoiceLineItems and perform database operations on Invoice data. The database operations include

writing a one-to-many relation into the database. The Invoice classes include:

1. InvoiceLineItem – Contains data about a Product added to the Invoice

2. Invoice – Contains the Invoice data described below and a list of InvoiceLineItem

3. InvoiceDB – Static class that contains methods to get data from or put data into a database

Add code to the frmEditItem below. See comments on form for more information.

1. Add code to frmEditItem at: //*****InvoiceLineItem 1. Add code here

2. Add code to frmEditItem at: //*****InvoiceLineItem 2. Add code here

3. Add code to frmEditItem at: //*****InvoiceLineItem 3. Add code here

4. Add code to frmMain at: //*****InvoiceLineItem 4. Add code here

5. Add code to frmMain at: //*****InvoiceLineItem 5. Add code here

InvoiceLineItem
The InvoiceLineItem class needs data to contain the 5 fields from the InvoiceLineItems table in the

MMABooks database. Look at the database in Visual Studio C# again. Again, I strongly suggest that you

name the data fields in your class with the same names as the InvoiceLineItem’s field names. After

completing your InvoiceLineItems class auto-implemented properties, code the following:

1. A default constructor

2. A parameterized constructor that accepts and set all InvoiceLineItem data

3. A ToString method to return a string with all the InvoiceLineItem data on one line

Invoice
The Invoice class needs data to contain the 7 fields from the Invoices table in the MMABooks database.

You will also need to add a List of InvoiceLineItems called invoiceLineItems and an OrderOptions

reference called oo to this data. Look at the database in Visual Studio C# again. Again, I strongly suggest

that you name the data fields in your class with the same names as the Invoice’s field names. After

completing your Invoice class auto-implemented properties, code the following:

1. A method called SetDate that sets the DateTime object in the Invoice to Now

2. A default constructor that instantiates the List of InvoiceLineItems, gets the OrderOptions from

the database and calls the SetDate method

3. A parameterized constructor that accepts and set all InvoiceLineItem data, instantiates the List

of InvoiceLineItems, gets the OrderOptions from the database and calls the SetDate method

4. A ToString method to return a string with all the InvoiceLineItem data on one line

5. A property called InvoiceDate that facilitates the setting or getting of the date as a string from

outside the class

6. A read-only property called InvoiceLineItems that gets invoiceLineItems

7. A indexer called InvoiceLineItem to set or get specific elements from invoiceLineItems

8. A method called CalcProductTotal that uses a loop to calculate the sum of UnitPrices in all the

InvoiceLineItems in the List and assigns it to the ProductTotal field

9. A method called CalcShipping that calculates the shipping charge. Remember that there is a

different cost for the first book and each additional book shipped and assigns it to the Shipping

field

10. A method called CalcSalesTax that calculates the tax from the sum of ProductTotal and Shipping

fields

11. A method called CalcInvoiceTotal that calculates the sum of the ProductTotal, Shipping and

SalesTax fields and assigns it to InvoiceTotal

12. A method called CalcAll that calls the 4 previous methods in steps 8 to 11 to set all their fields

13. A method called UpdateInvoiceLineItem tha accepts the index of the element in

invoiceLineItems List that you want to update, a decimal unitPrice to update the

InvoiceLineItem’s UnitPrice and a integer quantity to update the InvoiceLineItem’s Quantity, and

calls the CalcAll to update the requisite fields

14. A method called Add to add an InvoiceLineItem to the invoiceLineItems List and calls the CalcAll

to update the requisite fields

15. A method called RemoveAt to remove an InvoiceLineItem from the invoiceLineItems List by

index and calls the CalcAll to update the requisite fields

16. A method called Clear to clear all InvoiceLineItems from the invoiceLineItems List and calls the

CalcAll to update the requisite fields

InvoiceDB
The InvoiceDB class contains methods that allow your application to get the max InvoiceID from the

database, insert an Invoice into the database, and insert the InvoiceLineItems into the database. You

will need the following methods.

1. InsertInvoiceLineItem – Insert a InsertInvoiceLineItem into the InsertInvoiceLineItems table in

the database

2. GetMaxID – Gets the max InvoiceID from the database, which is the InvoiceID of the last

inserted record

3. InsertInvoice – Inserts an invoice into the database. This requires the Invoice data to be inserted

into the database, close the connection, get the max InvoiceID from the Invoices table, and

loops to insert all InvoiceLineItem into the InsertInvoiceLineItems table in the database by

repeatedly calling the InsertInvoiceLineItem method

Cart section on Form
Please add the following code to frmMain.

1. Add code to instantiate the reference for Invoice i in class level data.

2. Add code to assign -1 to the Invoice i in class level data to record that there currently is no

Customer in reference c from class level data

3. Add code to clear Invoice i.

4. Add code to copy CustomerID from Customer c to Invoice i

5. Add code to copy Invoice i CustomerID from maxID

6. Add code to set Invoice i CustomerID to -1 to record that there currently is no Customer in

reference c

7. Add code to loop through the items in lstCart to see if the currently selected Product p is in the

cart

8. Add condition to check if previous conversion succeeded, cart item does not have more books

than are in stock and Product is not already in Cart

9. Add code to calculate cost of all items purchased for this Product (Get UnitPrice from p and qty

from TryParse)

10. Add code to instantiate class reference InvoiceLineItem li with the selected Product from the

Products section. See comment for what data to pass to the constructor.

11. Add code to add InvoiceLineItem li to Invoice i

12. Add code to add InvoiceLineItem li to lstCart

13. Add code to call UpdateInvoiceLineItem in i to pass new values for lstCart selected index

14. Add code to delete Product from Invoice i by using lstCart SelectedIndex. The List of

InvoiceLineItem and lstCart Items are parallel arrays.

15. Add code to clear Invoice i

16. Add code to check if a Customer has been found or added. If CustomerID is less than zero, there

is no Customer found or added.

17. Add code to insert an Invoice i into the database

18. Add code to copy the data from the ProductTotal, Shipping, SalesTax and InvoiceTotal from

Invoice i to the TextBoxes in the Cart section

