CIS 3309 Section 4 Comprehensive Lab Project

The primary task is to complete an order entry system for MMA Books. The application needs to query
customers and products data from a database and commit invoices to the database, while maintaining
product inventory levels. The image below shows the form for the project. The form and most of the
form code are completed for you. Your still need to add classes and database code, and the form code
to use them. The form is divided into 3 sections:

1. The Customer section either gets a customer from or adds a customer to the database

2. The Products section shows all the MMA Books products and allows a user to select products
and add a quantity of them to the cart

3. The Cart section shows the products in the care, their sum of unit prices, shipping charge, sales
tax and invoice total, edit or delete products from the cart, clear the cart and submit the invoice
to the database

85 MMA Books Order Entry System - O X
Customer Products Catt
Customer ID |:| 2JST___ Wurach's JavaScript (2nd Edition) $54.50 5937 p
20RY Murach's jQuery (2nd Edtion) $54 50 677
Name [| A46C Murach's ASP NET 4 Web Programming with C# 2015 $57.50 4632

A46V Murach's ASP NET 46 Web Programming with VB 2015 $57.50 3974

addess [| ADC4 Murach's ADO.NET 4with C# 2010 $56.50 3756
ADV4 Murach's ADO NET 4 with VB 2010 $56 50 4538

ay [CRFC Murach’s CICS Desk Reference $50.00 1365
CS15 Murach's C# 2015 856,50 5011
State |:| DBIR DB2forthe COBOL Programmer, Part 1 (2nd Edition) $42 00 4325

DBZR DBZforthe COEOL Programmer. Part 2 (2nd Edition) $45.00 621

Zipcode |:| JAVP Murach's Java Programming $56 50 3455
JSP2 Murach's Java Servlets and JSP (3rd Edtion) $57.50 4339

Find Customer By ID MCBL Murachs Structured COBOL $62 50 2386
MCCP Murach's CICS for the COBOL Programmer $54.00 2368
MMag Mad Magazine $5.00 500
ey SQ12 Murach's SGL Server 2012 §57.50 2465 v
Clear Customer Product Code
Description | Murach’s JavaScript (2nd Ediion)
U Prce Prodct Totl Sdes Tex
On Hand Guarky Shpping invoice Total

Quantity To Purchass || Add To Cart

There is an additional Form, frmEditltem, with most of the code included that allows the UnitPrice and
Quantity to be changed in the cart. The Form below shows that the Unit Price and Quantity can be
changed but Product Code and Item Total cannot. The Item Total is automatically calculated when
either the Unit Price or Quantity are changed.

o5 Edit lte.. — O pe

Product Code |CS|Minimize

Unit Price [56.50 |

Guartity |'I |

tem Total |56.50 |

ox

Note that all the numeric data in the MMABooks database are either integer or decimal.

MMABooksDB class

This class has the GetSqlConnection to get a SQLConnection to the database and a method called
ExecuteNonQuery to execute inserts, updates and deletes from the database. You will need the
following methods.

GetSglConnection — Gets a SQLConnection to the database using the connection string

ExecuteNonQuery — Accepts a SQLCommand object and a SQLConnection object to call the
SQLCommand’s ExecuteNonQuery method. This will save dozens of lines of code in your insert, update
and delete methods. | suggest coding your InsertCustomer method in the CustomerDB class to check if
it works and cut all code from try-catch-finally to the last return at the end of the method and paste it
into ExecuteNonQuery. Then replace the cut code in InsertCustomer with a call to ExecuteNonQuery in
MMABooksDB.

Customer classes and Customer Form section

You will need to code 2 classes for a Customer:

1. Customer — Contains the data and methods for a customer
2. CustomerDB - Static class that contains methods to get data from or put data into a database

Customer class

The Customer class needs data to contain the fields from the Customers table in the MMABooks
database. Look at the database in Visual Studio C#. You can do this by using the drop and drag
approach used in chapters 18 and 19. Make sure to add all tables from the database to see the fields in
each table. They will tell you the data type and name of each field. | strongly suggest that you name the
data auto-implemented properties in your class with the same names as the Customer’s field names.
This will make coding you CustomerDB class much easier by eliminating any ambiguity of data. Ignore
and foreign keys associated with this table. The Invoices table is not necessary for any Customer
database operations for our problem. After completing your Customer class auto-implemented
properties, code the following:

1. A default constructor
2. A parameterized constructor that accepts and set all Customer data
3. AToString method to return a string with all the Customer data on one line

CustomerDB class

The CustomerDB class contains methods that allow your application to query a Customer from the
database, insert a Customer into the database and query the max CustomerID from the database. You
will need the following methods.

1. A method GetCustomer that accepts a CustomerID and returns a Customer if the query is
successful and returns a null if the query was not successful.

2. A method InsertCustomer that accepts the data fields for a Customer and inserts the Customer
data into the database. It returns a integer greater than zero if the insert is successful (will
return a 1 because 1 record in the database was affected by the insert, which will be returned by
ExecuteNonQuery), a zero if the record was not inserted into the database (ExecuteNonQuery

will return the zero) and a -1 if an exception is thrown by the insert. You should write a wrapper
method to accept a Customer object and, in the method, breaks the Customer into fields and
calls the InsertCustomer method that accepts the data fields.

3. A method GetMaxID that queries the database and returns the max CustomerID from the
database if the query is successful and -1 if it throws an exception.

Customer Section on Form

After completing the Customer and CustomerDB classes, you should add the code to frmMain Customer
section to test them. Look at the comments in the Customer Section for frmMain. You will see
comments like:

//*¥*¥*¥**Customer 1. Add code here
This shows the comment for step 1 below. Follow these steps:

1. Enter code in to query a Customer from the database by CustomerlID in
btnFindCustomerBy_Click

2. Add condition: If a Customer was found in DB set TextBoxes, Buttons and copy data to
TextBoxes.

3. Add code to copy the data from the Customer to the TextBoxes in the Customer section in
btnFindCustomerBy_Click

4. Add code to instantiate a Customer that uses the parameterized constructor with the data in the
Customer section TextBoxes in btnAddNewCustomer_Click. Put -1 in for CustomerID. The
correct CustomerID will be added after the insert because this field is auto-numbered in the
database

5. Add code to insert the Customer object into the database by calling the wrapper method
InsertCustomer in CustomerDB in the btnAddNewCustomer_Click method

6. Add code to query the max CustomerID from the database in btnAddNewCustomer_Click

Test you Customer section code by querying and adding Customers. Check in your test app that you
used to look at your database to see the Customer added to the Customers table.

Product classes and the Products Form section
You will need 3 classes for Products.

1. Product — Contains the data and methods for a product
2. ProductList — To contain multiple products
3. ProductDB — Static class that contains methods to get data from or put data into a database

Product class

The Product class needs data to contain the fields from the Products table in the MMABooks database.
Look at the database in Visual Studio C# again. Again, | strongly suggest that you name the data fields in
your class with the same names as the Product’s field names. Ignore and foreign keys associated with
this table. The Invoicelineltems table is not necessary for any Product database operations for our
problem. After completing your Product class auto-implemented properties, code the following:

1. A default constructor

2. A parameterized constructor that accepts and set all Product data
3. AToString method to return a string with all the Product data on one line

ProductList class
The ProductlList class inherits a List of Product and only contains a ToString method.

1. Add the ToString in the ProductList method prints the List of products by calling the Product
ToString method in a loop

ProductDB class

The ProductDB class contains methods that allow your application to query a Product from the
database, insert a Product into the database and query the max CustomerID from the database. You will
need the following methods.

1. A method GetProduct that accepts a ProductCode and returns a Product if the query is
successful and returns a null if the query was not successful.

2. A method GetAllProducts that returns all Products in the Products table in a ProductList if the
query is successful and returns a null if the query was not successful.

3. A method UpdateProduct that accepts the fields of a Product and update them in the
appropriate record in the Products table

4. Add code to insert the Customer object into the database by calling the wrapper method
UpdateProduct in ProductDB

5. A method UpdateOnHandQuantity to update the Products table OnHandQuantity after a
purchase has been made. It accepts a ProductCode (string) and an integer that represents the
number of the product purchased. A negative integer decreases OnHandQuantity and a positive
integer increases it.

Products Section on Form

After completing the Product classes, you should add the code to frmMain Products section to test
them. Look at the comments in the Products Section for frmMain. When the application is run, the
Products in the ListBox should be visible as shown in the frmMain above.

Next, follow these steps:

Enter code to load all Products from the database into your application in GetAllProducts.
Enter code to copy Products from the List returned in step 1.

Enter code to get the selected item in IstProducts and copy it to the class level Product p.
Enter code to copy data from selected item to Product TextBoxes and set
txtQuantityToPurchase to empty string

el

The code for the btnAddToCart_Click event handler will be added later.

OrderOptions classes

The OrderOptions class contains data necessary to complete an order. It contains the sales tax rate, fist
book shipping charge and the charge for additional books. Please look at the OrderOptions table in the
database for field names. You will need two classes:

1. OrderOptions — Contains the three fields described above
2. OrderOptionsDB — Contains code to get the data for OrderOptions from the database

OrderOptions

The OrderOptions class has3 fields from the OrderOptions table in the database. Add the necessary
auto-implemented properties to the class to contain the data from the table. After completing your
OrderOptions class auto-implemented properties, code the following:

1. A default constructor
2. A parameterized constructor that accepts and set all OrderOptions data
3. AToString method to return a string with all the OrderOptions data on one line

OrderOptionsDB
The OrderOptions class contains methods that allow your application to query OrderOptions from the
database. You will need the following method.

GetOrderOptions — Query OrderOptions from OrderOptions table in database

Invoice classes and the Cart Form section

This is the most challenging task. You create all the code in this class to manage an Invoice, its
InvoiceLineltems and perform database operations on Invoice data. The database operations include
writing a one-to-many relation into the database. The Invoice classes include:

1. Invoicelineltem — Contains data about a Product added to the Invoice
2. Invoice — Contains the Invoice data described below and a list of InvoicelLineltem
3. InvoiceDB — Static class that contains methods to get data from or put data into a database

Add code to the frmEditltem below. See comments on form for more information.

Add code to frmEditltem at: //*****InvoicelLineItem 1. Add code here
Add code to frmEditltem at: //*****InvoiceLineItem 2. Add code here
Add code to frmEditltem at: //*****InvoicelLineItem 3. Add code here
Add code to frmMain at: //*****InvoicelLineItem 4. Add code here
Add code to frmMain at: //*****InvoicelLineItem 5. Add code here

vk wnN e

Invoicelineltem

The Invoicelineltem class needs data to contain the 5 fields from the InvoiceLineltems table in the
MMABooks database. Look at the database in Visual Studio C# again. Again, | strongly suggest that you
name the data fields in your class with the same names as the InvoicelLineltem’s field names. After
completing your Invoicelineltems class auto-implemented properties, code the following:

1. A default constructor
2. A parameterized constructor that accepts and set all InvoiceLineltem data
3. AToString method to return a string with all the Invoicelineltem data on one line

Invoice
The Invoice class needs data to contain the 7 fields from the Invoices table in the MMABooks database.
You will also need to add a List of InvoiceLineltems called invoicelineltems and an OrderOptions

reference called oo to this data. Look at the database in Visual Studio C# again. Again, | strongly suggest
that you name the data fields in your class with the same names as the Invoice’s field names. After
completing your Invoice class auto-implemented properties, code the following:

1. A method called SetDate that sets the DateTime object in the Invoice to Now

2. A default constructor that instantiates the List of InvoiceLineltems, gets the OrderOptions from
the database and calls the SetDate method

3. A parameterized constructor that accepts and set all InvoiceLineltem data, instantiates the List
of Invoicelineltems, gets the OrderOptions from the database and calls the SetDate method

4. A ToString method to return a string with all the InvoicelLineltem data on one line

5. A property called InvoiceDate that facilitates the setting or getting of the date as a string from
outside the class

6. Aread-only property called InvoicelLineltems that gets invoicelineltems

7. Aindexer called Invoicelineltem to set or get specific elements from invoicelLineltems

8. A method called CalcProductTotal that uses a loop to calculate the sum of UnitPrices in all the
InvoiceLineltems in the List and assigns it to the ProductTotal field

9. A method called CalcShipping that calculates the shipping charge. Remember that there is a
different cost for the first book and each additional book shipped and assigns it to the Shipping
field

10. A method called CalcSalesTax that calculates the tax from the sum of ProductTotal and Shipping
fields

11. A method called CalclnvoiceTotal that calculates the sum of the ProductTotal, Shipping and
SalesTax fields and assigns it to InvoiceTotal

12. A method called CalcAll that calls the 4 previous methods in steps 8 to 11 to set all their fields

13. A method called UpdatelnvoiceLineltem tha accepts the index of the element in
invoicelLineltems List that you want to update, a decimal unitPrice to update the
InvoicelLineltem’s UnitPrice and a integer quantity to update the InvoiceLineltem’s Quantity, and
calls the CalcAll to update the requisite fields

14. A method called Add to add an InvoicelLineltem to the invoicelineltems List and calls the CalcAll
to update the requisite fields

15. A method called RemoveAt to remove an Invoicelineltem from the invoicelLineltems List by
index and calls the CalcAll to update the requisite fields

16. A method called Clear to clear all InvoiceLineltems from the invoicelLineltems List and calls the
CalcAll to update the requisite fields

InvoiceDB

The InvoiceDB class contains methods that allow your application to get the max InvoicelD from the
database, insert an Invoice into the database, and insert the InvoicelLineltems into the database. You
will need the following methods.

1.

Insertinvoicelineltem — Insert a Insertinvoicelineltem into the InsertinvoiceLineltems table in
the database

GetMaxID — Gets the max InvoicelD from the database, which is the InvoicelD of the last
inserted record

Insertinvoice — Inserts an invoice into the database. This requires the Invoice data to be inserted
into the database, close the connection, get the max InvoicelD from the Invoices table, and
loops to insert all InvoiceLineltem into the Insertinvoicelineltems table in the database by
repeatedly calling the InsertinvoiceLineltem method

Cart section on Form
Please add the following code to frmMain.

1.
2.

oukuw

10.

11.
12.
13.
14.

15.
16.

17.
18.

Add code to instantiate the reference for Invoice i in class level data.

Add code to assign -1 to the Invoice i in class level data to record that there currently is no
Customer in reference c from class level data

Add code to clear Invoice i.

Add code to copy CustomerlD from Customer c to Invoice i

Add code to copy Invoice i CustomerID from maxID

Add code to set Invoice i CustomerID to -1 to record that there currently is no Customer in
reference c

Add code to loop through the items in IstCart to see if the currently selected Product p is in the
cart

Add condition to check if previous conversion succeeded, cart item does not have more books
than are in stock and Product is not already in Cart

Add code to calculate cost of all items purchased for this Product (Get UnitPrice from p and qty
from TryParse)

Add code to instantiate class reference Invoicelineltem li with the selected Product from the
Products section. See comment for what data to pass to the constructor.

Add code to add Invoicelineltem li to Invoice i

Add code to add Invoicelineltem li to IstCart

Add code to call UpdatelnvoicelLineltem in i to pass new values for IstCart selected index

Add code to delete Product from Invoice i by using IstCart Selectedindex. The List of
Invoicelineltem and IstCart Items are parallel arrays.

Add code to clear Invoice i

Add code to check if a Customer has been found or added. If CustomerlID is less than zero, there
is no Customer found or added.

Add code to insert an Invoice i into the database

Add code to copy the data from the ProductTotal, Shipping, SalesTax and InvoiceTotal from
Invoice i to the TextBoxes in the Cart section

