12/4/21, 11:11 AM Assignment 3: A Memory File System

Assignment 3: A Memory File System

Due Friday by 11:59pm Points 100 Submitting a file upload

In this assignment, you will implement some operations for a toy in-memory File System, MemFS. This
File System is very similar to the one we saw in class (Chapter 40: File System Implementation), but it
keeps all blocks in memory, not in a storage device.

All the File System definitions are in a header file, memfs.h. It works as following:

MemFS is made of a collection of contiguous blocks, each one of 512 bytes in size. These blocks are

not in a storage device, but in user memory. The number of blocks is configurable when instantiating the

File System.

In MemFS there are two types of files, either regular ones (text files, images, etc), or directories (which
can contain other files). Both types of files are represented by a struct called a mem_inode. This struct
contains information about the type of file, its last modification time, and its contents. Contents of a file
are stored in other blocks. For regular files, the content blocks will contain text, data, etc depending on
the type of file, and for directories, the blocks contain directory entries. There are a set of pre-allocated
blocks that contain all the inodes in the system, and we can identify those inodes by a number.

Here is the definition for a mem_inode:

struct mem_inode {

char type; // File type
char num_links; // Number of links to inode in file system
unsigned short size; // Size of file (bytes)
block_ref indirect_ptrs[NINDIRECT]; // Indirect data block addresses
block_ref direct_ptrs[NDIRECT]; // Direct data block addresses
unsigned int mtime; // Last modified time
¥

Block 0 in MemFS is always the File System's Superblock. Inside this block, we store metadata about
the current system, such as the number of blocks, a magic number, etc.

struct superblock {
int size; // Size of file system image (blocks)
int magic_number; // Filesystem magic number
int num_data_blocks; // Number of data blocks
int num_inode_blocks; // Number of inode blocks.

int num_inodes; // Number of inodes

int inode_start; // Block number of first inode block

int block_start; // Block number of first data block
¥

https://fiu.instructure.com/courses/109531/assignments/1587867

1/4



12/4/21, 11:11 AM Assignment 3: A Memory File System
Blocks 1 and 2 are the Inode Bitmap and the Block Bitmap, respectively. A bitmap is a collection of bits
that tell us if an inode (in the case of the Inode Bitmap) or a block (in the case of the Block Bitmap) are
used. A 0 means the inode / block are not used, a 1 means they are used.

As mentioned above, mem_inodes have the information about their files stored as pointers to data
blocks. Data Blocks can be found from a number by adding a number of bytes to the start address of the
first data block. There are two types of block pointers in inodes, direct pointers (they contain the data
block number where the contents are) or indirect pointers (they contain a block reference that in turn
contains a list of additional blocks).

Directory inodes store directory entries (mem_dirents) in their data blocks. Each entry consists of an
inode number and a file name. In other words, only a directory inode knows about the names of its
children. This is how a mem__dirent looks like:

struct mem_dirent {
inode_ref inum;
char name[DIRSIZ];
¥

Based on this information, you need to implement a set of functions that perform operations on the
MemFS. You can write them in a file, memfs.c, and test it from your own main driver. These are the
functions you need to write:

1. void *makefs(int num_inode_blocks, int num_data_blocks)

This function creates the in-memory filesystem. It needs to first allocate enough memory to store all the
blocks (Including the superblock, the two bitmap blocks, and the requested inode and data blocks.) This
can be done with the malloc() or calloc() C functions. Once the memory has been allocated, the function
needs to initialize the superblock in the first 512 bytes of the space. The values in num_inode _blocks
and num_data_blocks are variable, but you can consider 32 for the first and 512 for the second as
examples.

2. inode_ref find_free_inode(void *fs)

This function goes through the bits in the inode bitmap (the second block in the File System) and finds
the first position that is O (starting from position 1, since position O is reserved). It then returns that
position. For example, if first byte of the inode bitmap was 01110010, this function would return 4.

3. block_ref find_free_block(void *fs)
Same as the previous function, but returns the first position in the data block bitmap that is 0.
4. void create_root_dir(void *fs)

This function takes a MemFS created with makefs() and creates the root directory. The root directory of
MemFS is called / (slash) and is a special directory because it is always located in the same inode

https://fiu.instructure.com/courses/109531/assignments/1587867 2/4



12/4/21, 11:11 AM Assignment 3: A Memory File System
number (defined by ROOT_INUM in memfs.h.) In order to create the root directory, you need to do the
following steps:

e Mark the ROOT_INUM inode as used in the inode bitmap. This means you need to set bit
ROOT _INUM (1) to a value of 1

» Find an unused data block by calling find_free_block(), and also mark it as used in the data block
bitmap

+ Add two mem_dirent entries in the data block that we found in the previous step. The first one must
be called . (dot) and represents the current directory, so its inum is ROOT_INUM, and the second
one is called .. (two dots) and represents the parent directory. Since the root has no parent, this
entry's inum should also be set to ROOT_INUM

¢ Create a new inode at position ROOT_INUM in the inode blocks and initialize it with the necessary
information such as the size in bytes used in the data block for the two entries in the last step, or the
current time (hint: use the time() function in time.h). The num_links can be set to 1 initially.

5. inode_ref find_inode_from_path(void *fs, char *path)

Given a string with the form "/dir1/dir2/file", return the inode number of the last part of the path (in this
case "file"). These are the steps to perform this:

o Start at the root inode, which is located at ROOT _INUM, retrieve the inode struct
+ Break the path string at the slash character position (in the previous path, you would get "dir1",
"dir2", "file") (Hint, use the strtok() function from string.h to do this)
o For each the the entries in the previous step, do the following:
1. Find the entry in the current inode data blocks as a mem_dirent (for example, in the previous
case you'd start by finding an entry called "dir1" in the root inode contents)
2. Get the inode number from the mem__dirent entry, and locate the new inode struct from this
number, and repeat step 1 for the next part of the path until you are done
3. Return the last inode number you found

6. inode_ref create_dir(void *fs, char *parent_path, char *dir_name)

This function calls find_inode_from_path() to get the inode of the parent_path, then it creates a

new mem_dirent in that inode for a new directory called dir_name. This is the same process as in
create_root_dir but now we'll need to allocate a new inode and block for "dir_name". For this function,
you'll need to add the new entry to the parent inode, and create the . and .. entries for dir_name.

Extra credit
7. inode_ref create_file(void *fs, char *parent_path, char *file_name, char *contents)

Same as create_dir(), but it creates a regular file with the contents in contents (which is a NULL-
terminated string).

8. Deal with indirect block pointers

https://fiu.instructure.com/courses/109531/assignments/1587867 3/4



12/4/21, 11:11 AM Assignment 3: A Memory File System

You will get full credit for finishing functions 1 to 6 without handling the case for indirect block pointers
(i.e., inodes will just use blocks that contain actual data). To get additional extra credit, implement
function 7 so that it can store data in additional blocks referenced by indirect pointers (that is, after your

inode uses all direct pointers, it will use the indirect pointer block to store additional block references to
other blocks with data)

Notes

+ We will see all the functions during the labs, so make sure you attend the next labs or watch the

videos if you have questions about this assignment. Also, make sure you review Chapter 40 of the
textbook for a more in-depth explanation of all the concepts.

Don't worry about the num_links variable in inodes. For the purposes of this assignment you can set
it to 1 when you create a new file.

Have in mind that the whole filesystem will be in memory. You will allocate all of it in makefs(). You
will also have to write some helper functions to convert from inode numbers to struct mem_inode

pointers that reference the right position in memory, and also from data block numbers to void *
pointers to the actual blocks.

» Upload your memfs.c file with your function implementations for the submission.

Files

memfs.h | (https:/ffiu.instructure.com/courses/109531/files/19483886/download?download_frd=1)

https://fiu.instructure.com/courses/109531/assignments/1587867 4/4



