

COMPUTER SCIENCE 10A (FALL TERM, 2021)

INTRODUCTION TO PROBLEM SOLVING IN PYTHON

PROGRAMMING ASSIGNMENT 8

DUE: WEDNESDAY, DEC 8TH, 11.59PM

Program Description:

This program focuses on using data structures in complex ways. You will need an input txt file

(provided along with this description of the assignment) containing ratings from the web site;

place the input file in the same folder as your program.

Background:

If you've ever bought a book online, the bookseller's website has probably told you what other

books you might like. This is handy for customers, but also very important for business. In 2010,

online movie-rental company Netflix awarded one million dollars to the winners of the

Netflix Prize. The competition simply asked for an algorithm that would perform 10% better than

their own algorithm. Making good predictions about people's preferences was that important to

this company. It is also an important current area of research in machine learning, which is part of

the area of computer science called artificial intelligence.

What you will do:

So how might we write a program to make recommendations for books? Consider a user named

Carlos. How is it that the program should predict books Carlos might like? The simplest approach

would be to make almost the same prediction for every customer. In this case the program would

simply calculate the average rating for all the books in the dataset and display the highest rated

book. With this simple approach no information about Carlos is used.

We could make a better prediction about what Carlos might like by considering his actual ratings

in the past and how these ratings compare to the ratings given by other customers. Consider how

you decide on movie recommendations from friends. If a friend tells you about a number of

movies that they enjoyed and you also enjoyed them, then when your friend recommends another

movie that you have never seen, you probably are willing to go see it. On the other hand, if you

and a different friend always tend to disagree about movies, you are not likely to go to see a

movie this friend recommends.

Your task for this project is to write a program that takes people's book ratings and makes book

recommendations to them using both techniques described above. We will refer to the people

who use the program as "users".

https://en.wikipedia.org/wiki/Netflix_Prize

Implementation Details:

Your program will read from a file that contains sets of three lines. The first will

contain a username, the second a book title and the third the rating that user gave the

book. An example is displayed on the right.

Use the following command to open and read the lines in a file:

lines = open("ratings.txt").readlines()

The open() function to open a file. This function returns the file as object.

The readlines() function reads a file until the end. This function returns a list

containing the lines.

When your program starts it should read through the file and create a list with one

occurrence of each book in the file. For example, the file at right might produce the

following list:

['1984', 'Cats', 'Harry Potter', 'Animal Farm', 'Watership

Down', 'The Hobbit']

Note that the order of the books does not matter. We suggest that you create this list by

putting all books in the file into a set and then casting that set to a list. If you have a

variable called data that stores a set, you can turn it into a list by writing data

= list(data).

Once you have this list, create a dictionary to store the rating data and loop through the

file again. This time add each person in the file as a key to the dictionary. The value

that is associated with them should be a list the same length as the list of books you

created in your first pass through the file. You should store the rating at the same index

that book’s name appears at in in the list of books. For example, when the first three

lines of the file on the right are read, we would add a mapping from the key Bob to a

value of [1, 0, 0, 0, 0, 0]. Books that the user has not rated (or whose

ratings we have not read yet, as in this case) should be represented by 0s.

The dictionary created with the file at right and the list of books written above would

be as follows:

{'Kalid' : [0, 0, 1, -3, 3, 0], 'Carlos': [-5, 0, 3, 1, 0, 0],

 'Suelyn': [1, 0, 1, -3, 0, 0], 'Bob' : [0, 1, -3, 0, 0, 1]}

Now your program is ready to make recommendations. It should output the following message:

Welcome to the Book Recommender. Type the word in the

left column to do the action on the right.

recommend : recommend books for a particular user

averages : output the average ratings of all books in the system

quit : exit the program

next task?

The prompt should be repeated after every task is finished.

Bob

Cats

1

Suelyn

Harry Potter

1

Carlos

Animal Farm

1

Kalid

Watership Down

3

Carlos

1984

-5

Bob

Harry Potter

-3

Suelyn

1984

1

Carlos

Harry Potter

3

Suelyn

Animal Farm

-3

Bob

The Hobbit

1

Kalid

Animal Farm

-3

Kalid

Harry Potter

1

Averages

If the user selects the averages option, the program should output

all of the books in the file sorted by average rating from highest to

lowest. For example, for the file on the previous page you should

output the listing on the right.

We suggest that you figure this out by building up a list of tuples

containing the average rating for a book first and the title of that

book second. You can build up this list by going through the list of

books one at a time and for each person in the dictionary adding up their rating of that book and

counting how many people in the dictionary rated it something other than 0. The average score

for that book is the sum scores divided by the count of non-zero ratings. Once you have created

this list you can sort it by using the list’s sort function.

Since the averages will stay the same throughout the run of the program you may want to

calculate them once at the start of the program.

Recommendations

When the user selects the recommend option the program should first prompt the user for the

name of the user that the program wants recommendations for as follows:

user?

If the name that the user types in isn’t in the dictionary of ratings, the program should output the

same list of books as when the user selects the averages option.

If the name the user inputs is in the dictionary of ratings you should use the data in the dictionary

to find the other users that are most similar to the user you are looking for recommendations for.

The first step to do this is to calculate the similarities between your user and the other users. We

will use the dot product between the users’ lists of ratings to calculate their similarity. This means

that we will multiply each element in your user’s list with the element at the same index in the

other user’s list and sum the result. For example, if we were looking for a recommendation for

Kalid we would do the following to calculate his similarity to Carlos:

(0 * -5) + (0 * 0) + (1 * 3) + (-3 * 1) + (3 * 0) + (0 * 0) = 0 +

0 + 3 + -3 + 0 + 0 = 0

Compute this similarity for each user in the dictionary. Store tuples containing first the similarity

number and second the name of the other user in a list. You can use the list sort function to sort

this list.

Note that the user that you are looking for will always be in the dictionary. We are not interested

in how similar the user is to themselves. You may find it helpful not to add the user to the list or

to remove them after sorting. Note that the user will always be most similar to themselves.

Now that we have a list of the most similar users, we can use this to figure out which books to

recommend. To generate recommendations, take an average of the ratings of the three users with

the highest similarity to the user you are looking for.

To average the ratings, create a new list the same length as the list of books and filled with 0s.

Loop through this list. For every index of this list loop through the first three users, add up their

ratings and then divide by the number of non-zero ratings. If there are no non-zero ratings for a

book you should not divide as you will get a divide by 0 error.

Watership Down 3.0

The Hobbit 1.0

Cats 1.0

Harry Potter 0.5

Animal Farm -

1.6666666666666667

1984 -2.0

Once you have calculated these averages, create a list of tuples that contain first the average

rating and then the book title for all books that have non-zero ratings in the averages list. Then,

sort this list. Now you have a list of books to recommend.

Note that it must be possible for the user to choose options multiple times in any order and get the

correct results each time.

Your program should match the expected output files provided on the course web page exactly.

Development Strategy and Hints:

We suggest that you complete the assignment in the order described above.

You will find the list sort function very helpful for this assignment. The sort function sorts

elements in a list from smallest to largest. If the list contains tuples it sorts by the first element in

the tuple. Therefore, it is very important to order your tuple contents as described in the

instructions above. If you have a variable called my_list, the following code will sort it:

my_list.sort(). Note that sort alters the list, it doesn’t return a new list.

Use print statements to view the state of your structures. Create small input files for yourself to

help you debug.

Style Guidelines and Grading:

Part of your grade will come from appropriately using data structures and following the

algorithms described in this document.

Redundancy is always a major grading focus; avoid redundancy and repeated logic as much as

possible in your code. Divide your code into a set of functions that captures the structure of the

program.

Follow good general style guidelines such as: appropriately using control structures like loops

and if/else statements; avoiding redundancy using techniques such as functions, loops, and

if/else factoring; good variable names, and naming conventions; and not having any lines of

code longer than 80 characters. You may have no global variables (except constants) and you

may not nest functions inside other functions

Comment descriptively at the top of your program, each function, and on complex sections of

your code. Comments should explain each function’s behavior, parameters and returns.

Include a header comment at the beginning of your program with some basic information and a

description of the program in your own words.

Name Student

COSI 10a, Fall 2021

Programming Assignment #8

Description: ...

You also need to include comments in your code.

Submission and Grading:

Turn in a file named recommender.py that should be inside a folder named

yourfirstname_yourlastnamePA8, then zip the folder into a zip file for submission. The

zip file should have the following name: yourfirstname_yourlastnamePA8.zip

(Please make sure to use exactly this file name, including identical capitalization).

Your program should be submitted via Latte before it is due (for late policy check the syllabus).

You will be graded on:

• External Correctness: The output of your program should match exactly what is in the

question description. Programs that do not compile will not receive points for external

correctness.

• Internal Correctness: Your source code should follow the stylistic guidelines shown in

class. Remember to include the comment header at the beginning of your program and

comment your code.

	If you've ever bought a book online, the bookseller's website has probably told you what other books you might like. This is handy for customers, but also very important for business. In 2010, online movie-rental company Netflix awarded one million do...
	So how might we write a program to make recommendations for books? Consider a user named Carlos. How is it that the program should predict books Carlos might like? The simplest approach would be to make almost the same prediction for every customer. I...

