CS0012 Introduction to Computing for the Humanities
Project 3

Overview

In this project, you will use your understanding of object-oriented programming to recreate a famous study on
racial segregation. Using objects to represent “people” and “neighborhoods” will allow you to create a computer
simulation mirroring the original study efficiently and effectively.

Background

For an idea of what you’ll be tackling with this project, you can take a look at Parable of the Polygons. This
interactive demonstration shows how small individual amounts of “shapist” bias can result in large amounts of
segregation in the aggregate.

Per the acknowledgments at the bottom of the website, this interactive parable is based on a 1971 article by
Thomas Schelling that has been cited over 4,000 times (according to Google Scholar). Using pennies and nickels
as stand-ins for race, his model tried to isolate and study one factor that could contribute to racial segregation: the
scaling up of individual decisions, made without regard to the actions of others. In brief, he found that there would
be a dramatic over-satisfaction of demands: from an initial state of near-integration (46% of same-coin neighbors,
on average), moving coins to achieve a minimum of 50% same-coin neighbors led to an equilibrium state with an
average 80% same-coin neighbors. In short: the quest for an evenly mixed neighborhood led to an extremely
segregated one. This was true under several possible variations and initial conditions, and in a 1991 study the
result was found to be consistent with real-world survey data, from multiple cities.

In this project, you will write a program to simulate many iterations on Schelling’s original model. Schelling’s
model used the following setup:

The collection of “neighborhoods” is represented as a grid with 13 rows and 16 columns, and with coins
distributed at random among the spaces, leaving some spaces blank (about 25-30% blank spaces seemed to work
well). Start with an equal number of the two coins, i.e. each being half the number of non-blank spaces. Let the
“neighborhood” of any one coin equal the surrounding eight spaces, or the surrounding five spaces at the sides of
the area, and three at the corners. Let a coin be considered content if no fewer than half of its neighbors are of the
same type, and considered discontent otherwise. Following this initial setup, each discontent coin is then moved
to a space that will let them be content. Note that this movement may cause new coins that were previously content
to now be discontent. This process of checking for content/discontent coins, and then moving all marked as
discontent is repeated until some stable equilibrium is reached. With enough blank spaces, they can usually all be
satisfied.

Schelling investigated this process by hand, moving coins around on a table top and counting; naturally, there
were limits to the number of repetitions he could manage, and to the size of the population he was simulating. By
simulating the experiment on a computer, you will be able to run through many more repetitions much more
quickly.

Part 1: Representing the grid

We will use two classes to represent the coins in our grid. First, each coin will be represented with the use of a
Coin class. This class should have the following:

¢ An initializer method __init__(self, type) that accepts the coin’s type as an int (1 for a penny, 5 for a nickel),
stores the type in a data attribute (named type), and initializes another attribute named content to be True.

¢ An accessor method getType(self) to access the coin’s type.

¢ accessor and mutator methods for the content attribute (getContent(self), make_content(self))


https://ncase.me/polygons/
https://ncase.me/polygons/
https://ncase.me/polygons/

e A_ str_ (self) method that returns a string representation of the coin (e.g., “5C” for a content nickel or “1D”
for a discontent penny).

Our second class will represent the grid, itself. Your Grid class should have the following:

¢ An initializer method __init__(self) that creates the grid as a list of lists. The outer list should be called coins.
[t should contain 13 nested lists, each one representing a row of the grid. Each of these nested lists will hold
16 items. Each index of each nested list should contain either an instance of a Coin object or the value None
(representing an empty space in the grid).

e This __init__(self) function should assign 58 spaces in the grid the value None (empty spaces), 75 spaces to
an instance of a Coin object with type 1 (pennies), and 75 spaces to an instance of a Coin object with type 5
(nickels). These assignments should be random: for each space in the grid, the initializer should randomly
select from the available types what to place there (None, an nickel, or a penny, as long as there are less than
58 None’s in the grid, less than 75 nickels, and less than 75 pennies). If 75 nickels have already been placed,
all future spaces should only randomly choose between None and pennies (and similarly, if all 75 pennies
have been places, only options left are None and nickels, etc.).

e A _ str__ (self) method that returns a string formatted to represent the Graph. It should be 13 lines, where
each line has 16 entries. Entries on a line should be separated by a single space. Each entry should either be
the result of calling __str__() on a Coin object or “__” if that entry has the value None.

Note that you will be adding more methods to the Grid class in later parts of the project.

To complete Part 1, you should write a main() function that creates a new Grid object and prints it to the screen.
Because your Coin objects (and empty spaces) are randomly placed, your program should produce a different grid
each time it is run.

Part 2: Finding discontent coins

At this point, each grid that your program produces will be full of seemingly content coins. Your Coin objects are
initialized to be content and so far you have not implemented any code that would change that. For Part 2, you will
implement a method check_content(self) on the Grid class. This function should consider each coin object in the
grid one at a time and check if it is content or discontent. After making this determination, it should set each Coin
object’s content attribute accordingly.

You should consider a coin to be content if 50% or more of its neighbors are of the same type. For each Coin
object, you may have to check up to 8 neighbors. Consider a coin in column j of row i (e.g., the object stored in
coinsli][j]). You may need to check each of the following:

coins[i - 1][]j - 1]
coins[i - 1][7]
coins[i - 1][]j + 1]
coins[i][j - 1]
coins[i][]j + 1]
coins[i + 1][] - 1]
coins[i + 1][]]
coins[i + 1][] + 1]

For the coin stored in column 5 of row 4, this would mean checking the following indices:

coins[4][3]
coins[4][4]
coins[4][5]
coins[5][3]
coins[5][5]



coins[6][3]
coins[6][3]
coins[6][4]
coins[6][5]

Further note that not all coins will have 8 possible neighbors. the coin stored in the first column of the first
row (which, because lists are indexed from 0 would be coins[@][@]), only has 3 neighbors: coins[0][1],
coins[1][1], and coins[1][@]. Hence, this coin would be discontent if any 2 of its neighbors were of the
opposite type.

Note that for this part of the project, you should not be moving any discontent coins, yet. You should only check
the status of each coin in the grid (content or discontent).

After implementing check_content(self), modify your main() function to call check_content(self) after
initializing the Grid object, but before printing it.

Part 3: Moving discontent coins

Now you will implement a method move_discontent(self) on the Grid class to move each of the Coin objects in the
grid that are marked as discontent to empty spaces (indices in the nested list data structure that hold a None
value) where they would be content. Once that Coin object is moved, its content attribute should be set to True
using the make_content method. You may move each discontent coin to any space in the grid that is currently
empty and would allow the coin to be content. You have the freedom to decide how move_discontent(self)
accomplishes this.

Note that since you are only setting the content attribute of the moved coins, other coins in the grid may
become discontent as a result of the move. Hence, after a call to move_discontent(self), you will need to call
check_content(self) again to ensure that the state of the grid is accurately reflected.

Once you have implemented move_discontent(self), modify your main() function to allow the user to perform
repeated moves. Your main function should:

1. Initialize a Grid object
2. Ensure that check_content(self) is called on that object

3. Print the Grid object

“«_n

4. Ask if the user would like to move discontent pieces (by entering “m”) or quit (by entering “q”). Any other

input should be considered invalid.

5. If the user selected to move discontent coins, call move_discontent(self) on the Grid object, ensure that the
check_content(self) is called on the Grid object again, print it again, and prompt the user again.

6. If the user selected to quit, exit the program

Part 4: Processing more iterations

Note that at this point, you are not moving much faster Schelling with his original coins-on-table model. To speed
things up, your program should allow the user to instruct your program to process many repetitions without
stopping. In addition to accepting “m” and “q” at each prompt, if the user enters an integer between 1 and 1000,
your program should process that many iterations, and then display the grid and prompt again (note that this
means that entering 1 or entering “m” would do the same thing). Any integers entered outside of this range should
be considered invalid.



Once you have completed all parts of the lab, be sure to show your work to the lab instructor

Rubric

Your program will be evaluated according to the following rubric:

Coin class written as specified 10
Grid’s __init__ method works as specified 15
Grid’s __str__method works as specified 5

Grid’s check_content method works as specified 20
Grid’s move_discontent method works as specified 20
Has a main function and interactive run of the simulation works as specified 20
Code is well laid-out and commented 10




