EE3093 — C/C++ Programming
C/C++ Programming Assighment
(60% of the overall course grade)
Due 18/12/2021 before 6:00 pm

This assignment is worth 60% of your overall course grade.
Two parts (1) C Part & (2) C++ Part are in this assignment. Total 100 marks is equally divided as 50
marks for C Part and 50 marks for C++ Part.

For the C Part submit the source code as the report. For the C++ Part follow the instructions in
the C++ Part instructions.

Submit the source code (.c file) as the report.

Submit the signed Plagiarism Sheet.

Submit typed report (*.c source file). Handwritten / scanned report will not be graded.
Attach a signed Plagiarism Sheet with your submission. Failing to do so or adhere to plagiarism
rules as set by the University will lead to appropriate penalties.

Files must be uploaded on MyAberdeen via the relevant link.

C Part
Implementation of Algorithm to Compute the Peak-Power and Full-Width at Half-
Maximum (FWHM) of a Pulse in C Programming Language

Temporal domain pulse data is available as a sequential file named pulse.txt with time vector (1D data)
in the first column and pulse power vector in the second column. Plot the datain pulse. txt using MATLAB
or Excel to get an idea of how the pulse looks in the temporal domain. Develop a C program for the
implementation of algorithm to compute the peak-power and Full-Width at Half-Maximum (FWHM) of the
pulse after reading the data from the pulse. txt file. Following steps can help to develop and implement
the algorithm:

e Using fopen function, open the pulse.txt sequential file and assign its address to a FILE
pointer with checking condition for successfully opening the file. If the sequential file is successfully
opened for reading, FILE pointer will point to the beginning of the pulse.txt sequential file.

e Store the location (beginning of the pulse.txt sequential file) pointed by the FILE pointer, as
the algorithm needs the FILE pointer to point to the beginning file once again, after counting the
number of data points. This can be achieved by ftel1l function.

e Count the number of \n (new line character) while reading the characters in the pulse.txt
sequential file using getc function until EOF (End-Of-File). This count will provide the number of
data points in the pulse. txt sequential file.

e Using £seek function, make the FILE pointer to point to the beginning file once again.

e Using the number of data points in malloc function, dynamically allocate the required amount of
memory to store the time and pulse power data.

e Using £scanf function, read and store the time and pulse power data from the pulse. txt file.

e Scan through the pulse power data to find the peak-power (maximum value of the pulse power).

e Scan through the left-side and right-side of the peak-power position in the pulse power data points
to find the locations, where the pulse power goes just below the half of the peak-power value.

e Compute the left-side and right-side average time data values using the respective two-time data
points (above and below), where the pulse power goes just below the half of the peak-power value.

e FWHM of the pulse can be calculated using either the sum (if both sides averaged time value has
opposite sign) or difference (if both sides averaged time value has same sign) of the modulus (use
fabs function) of the left-side and right-side average time data values.

Details of the percentage of the marks:

1. Declaration of necessary variables, pointers, arrays, structures, function prototypes [3 marks].
Opening sequential file with necessary checking condition for successful access [4 marks].
Correctly counting the number of data points in the sequential file [7 marks].

Allocation of necessary 1D arrays memory to store time and pulse power data [3 marks].
Computing the peak-power of the pulse [5 marks].

Locating the left and right sides data positions where pulse power goes below its peak [7 marks].
Calculation of left and right sides two-time data points average values using a general function
written for the mean value calculation of any number of data [7 marks].

8. Correctly calculating the pulse FWHM [5 marks].

9. Display of the number of data points, pulse peak-power and FWHM [3 marks].

10. Release of the dynamically allocated memory for the arrays and closing file [3 marks].

11. Structured programming and adding comments about the algorithm implementation [3 marks].

NowuswWwnN

Sample output:
Number of sampled points is 1024

Pulse peak power is 0.017421

Pulse FWHM is 29.785156

EE3093 2021-22 MAIN: C++ Instructions

EE3093: C++ Instructions to Students

UNIVERSITY OF ABERDEEN SESSION 2021-22

EE3093: Cpp part (50 marks out of 100)

Degree Examination in EE3093 C/C++ PROGRAMMING
First Half Session: 2021-22

This is an open book online exam which is expected to take up to 6 hours to complete but submission will be

accepted, without incurring any penalties, until the above submission deadline; students who have not submitted
after this time will be required to present for reassessment in the resit diet.

1/12

EE3093 2021-22 MAIN: C++ Instructions

Instructions to users
e (Create a new directory and create there a new C++ project (console application), as shown in labs/tutorials.

e When creating header/cpp files for your project, use file names that clearly identify this assignment, the
section they refer to and the class they implement; for example: “cpp_partl_classnamel.h”,
“cpp_partl_classnamel.cpp” (if needed), “cpp_partl_classname2.h”, “cpp_partl_test.h” etc.

In this document, specific requirements for your implementation are set depending on your student ID, based on the
Table below. All details are provided in each section of this paper.

Table 1: Relation between digit X of your student ID and the option for your implementation out of 5 choices.

Xt digit of your Student ID

One in 5 Options (0, 1, 2, 3, 4) to choose for your implementation

Example assuming the student ID is: 51807834

For the 8™ digit (4) the option to choose is Option 2. For the 7t digit (3) the option to choose is Option 1.
For the 6% digit (8) the option to choose is Option 4. For the 5 digit (7) the option to choose is Option 3.
For the 4% digit (0) the option to choose is Option 0.

Submission info
The assessment in this document is developed across sections that test increasing levels of knowledge and skills;
make sure you have understood, implemented and tested one section before moving on to the next.

Your submission via myAberdeen for the CPP part should include:

e The Student Selection Document (provided with submission material), reporting your selections, based on
your student ID (as instructed throughout this document), and test outputs.

e All relevant source code, in clearly-named separate (.h/.cpp) files. Please indicate in the relevant tables of
the Student Selection Document the name of the file(s) containing the implementation and testing. Only
files named in that document will be considered for marking. You can submit all files as a single zipped file.

Recommended completion, backup and submission strategy:

Start working on the day the assignment is released; if you can setup, compile and run an early version of your cpp
project (even if it only implements one of the required functions), you can ensure your HW and SW are working
properly. If a technical problem arises, you can then contact course staff readily.

If you work on your own PC (not via VDI): As you progress with your answers, save all material (cpp/h files and PDF),
on an external repository. For example: at the end of each day of work, you can zip all material (source files and PDF:
no executables) finalized up to that day and email it to yourself. If your PC fails on a given day, you will not lose
multiple days of work.

You will submit your assignment via MyAberdeen. During the submission period, MyAberdeen accepts multiple
submissions. When you are satisfied with your answer, submit all material (source files and PDF). If you then
improve your answers before the deadline, you can submit again (all source files and PDF); this later submission will
be marked.

Do not wait till the deadline to make your one and only submission, as unexpected technical problems may lead
you to miss the submission deadline entirely.

2/12

EE3093 2021-22 MAIN: C++ Instructions

Part 1: Flight Timetable basic components (28 marks out of 50)

Introduction

Implement SW objects (classes) to create an airport daily timetable. An entry in an airport timetable comprises the
fields in Table 2. The first class to implement is FlightTimetableEntry and represents a (potential) entry in airport
timetables. The Basic Rules that apply to a valid airport timetable entry are in Table 4 (based on your student ID).

Table 2: Fields of a Flight Timetable Entry.

Field Description and/or Possible values

Origin A city amongst: {Aberdeen, London, Manchester, Copenhagen, Esbjerg}
Destnation A different city amongst: {Aberdeen, London, Manchester, Copenhagen, Esbjerg}
Airline_ID One of: {BA, SK, KL, EZY, LM}

Flight_Code A four-digit number: XYZW following the rules in Table 4

Local time, format hh:mm; within 00:00 and 23:59
Local time, format hh:mm, as per flight duration; local time in DNK = local time in UK +1hr

Scheduled_Departure
Scheduled_Arrival

Expected Duration

Format hh:mm; as per flight duration in Table 3

Table 3: Flight duration hh:mm. Scheduled Departure and Arrival fields must be consistent with the given flight duration.

Destination
Aberdeen London Manchester Copenhagen Esbjerg
Aberdeen - 1:35 1:20 1:35 1:25
c London 1:35 -
20 Manchester 1:20
© Copenhagen 1:35
Esbjerg 1:25

Table 4: Rules for Flight Code and Departure Time fields. Your Option number is based on your student ID 8" digit as in Table 1.

Basic_Rules Option 0

Aberdeen (UK)

London (UK)

Manchester (UK)

Copenhagen (DK)

Esbjerg (DK)

Departing Flight
l(local) time rule

Departures within
5:30 and 21:00

Departures within
4:30 and 21:10

Departures within
5:00 and 21:05

Departures within
5:00 and 21:45

Departures within
6:00 and 21:00

Flight code (XYZW)
Jrules

First flight code digit (X): O for domestic flights (origin & destination in the same country); 5 for
international flights.

Second flight code digit (Y): 1 for flights departing and arriving before noon (local time); 6 for
flights departing and arriving after 18:00 (local time); 3 for all other flights.

Third and fourth flight code digits (ZW): random number in the following ranges for each airline:
BA: [00-19], SK: [20-39], KL: [40-59], EZY: [60-79], LM: [80-99]

Basic_Rules Option 1

Aberdeen (UK)

London (UK)

Manchester (UK)

Copenhagen (DK)

Esbjerg (DK)

Departing Flight
l(local) time rule

Departures within
5:00 and 20:50

Departures within
5:00 and 21:05

Departures within
5:15 and 20:55

Departures within
5:00 and 21:45

Departures within
5:45 and 21:30

Flight code (XYZW)
Jrules

First flight code digit (X): 0 for domestic flights departing before noon; 2 for international flights
departing before noon (local time); 7 for domestic flights departing after noon; 9 for
international flights departing after noon (local time).

Second flight code digit (Y): O for flight duration up to (and including) 1:30; 5 for longer flights.

Third and fourth flight code digits (ZW): random number in the following ranges for each airline:
BA: [80-99], SK: [00-19], KL: [20-39], EZY: [40-59], LM: [60-79]

3/12

EE3093 2021-22 MAIN: C++

Basic_Rules Option 2

Aberdeen (UK) London (UK) Manchester (UK) | Copenhagen (DK) Esbjerg (DK)

Departing Flight
l(local) time rule

Departures within | Departures within | Departures within | Departures within | Departures within
5:30 and 20:45 5:00 and 21:00 5:30 and 21:05 5:00 and 22:00 5:00 and 22:00

Flight code (XYZW)
Jrules

First flight code digit (X): 0 for domestic flights (origin & destination in the same country) lasting
less than 1:00; 2 for domestic flights lasting 1:00 to 1:30; 3 for domestic flights lasting more than
1:30. 4 for international flights lasting less than 1:40; 5 international flights lasting 1:40 or longer.

Second flight code digit (Y): BA: 0, SK: 2, KL: 4, EZY: 6, LM: 8.

Third and fourth flight code digits (ZW): random number in the range: [00-99]

Basic_Rules Option 3

Departing from

Aberdeen (UK) ‘ London (UK) ‘Manchester (UK) l Copenhagen (DK)‘ Esbjerg (DK)

Departing Flight
(local) time rule

Domestic flight (origin & destination in the same country) departures within 6:00 and 22:30.
International flight departures within 5:00 and 21:00.

Flight code (XYZW)
frules

First flight code digit (X): 1 for domestic flights; 9 for international flights.

Second flight code | Second flight code | Second flight code | Second flight code |Second flight code
digit (Y): 1 digit (Y): 3 digit (Y): 5 digit (Y): 7 digit (Y): 9

Third and fourth flight code digits (ZW): even/odd random number in the following ranges for
each airline: BA/SK: even/odd in [00-39], KL/EZY: even/odd in [40-79], LM: even in [80-99]

Basic_Rules Option 4

Aberdeen (UK) ‘ London (UK) ‘Manchester (UK) | Copenhagen (DK)‘ Esbjerg (DK)

Departing Flight
(local) time rule

Domestic flight within 6:30 and 22:30.
International flight departures within
6:00 and 22:00.

Domestic flight (origin & destination in the same country)
departures within 6:00 and 23:00.
International flight departures within 5:30 and 21:10.

Flight code (XYZW)
Jrules

First flight code digit (X): 3 for
domestic flights;
8 for international flights.

First flight code digit (X): 2 for domestic flights;
8 for international flights.

Second flight code digit (Y): Departing before 11:00: 2 for flight duration under 1:30; 3 for longer.
Departing at 11:00: 7 for flight duration under 1:30; 8 for longer

Instructions

Third and fourth flight code digits (ZW): even/odd random number in the following ranges for
each airline: EZY/LM: even/odd in [00-39], BA/KL: even/odd in [40-79], SK: even [80-99]

Details of the required implementation

Your class FlightTimetableEntry should support the public member functions in Table 5, along with any other
functions/variables required in your implementation.

A class supporting the functionality required for FlightTimetableEntry constitutes the essential building block for the
implementation in part 2.

The functions in Table 5 are assumed in the test routine in Table 6, which form the basis of the tests required to
verify and demonstrate the correct behaviour of your implementation. Include your test results (sample in Figure 1)
in the Student Selection Document (follow the instructions therein).

4/12

EE3093 2021-22 MAIN: C++

Instructions

Table 5: Required public member functions for class FlightTimetableEntry. Examples of inputs in Table 6 and output in Figure 1. Marks breakdown in Table 7.

Function declaration

Description

Setters (input functions)

// type of inputs “origin®, and “destination” is a specifically defined enum;
// similarly for “airlineID”;

// departure time is given by dept_hour:dept_min

bool checkAndSetFTE(AirportEnum orig, AirportEnum dest, AirlinesEnum airID, int
flCode, unsigned char dept_hour, unsigned char dept_min

If the entry is not already set: if all input values (origin, destin., airline ID,
flight code, dept hour, dept minute) comply with the Basic Rules, then
set all the fields of the entry; return true. If any rule is violated, return
false and print an error message.

If the entry is already set: print an error message and return false (must
use the reset() function before setting)

bool setRandomFTE()

If the entry is not already set: set all fields with random values that
comply with the Basic Rules. If the entry is already set: print an error
message and return false (must use the reset() function before setting)

void reset()

Resets all the fields of the Timetable entry.

Getters (output functions)

// type of input parameters as in setFTE(..);

bool getFTE(AirportEnum& orig, AirportEnum& dest, AirlinesEnum& airID, int&
flCode, unsigned char& dept_hr, unsigned char& dept_min, unsigned char& arriv_hr,
unsigned char&arriv_min, unsigned char& durat hr, unsigned char& durat min) const

If the entry is set: input variables (passed by reference) are set with
entry field values as in Table 2; return true.
If the entry is not set: return false.

void printEntry() const

If the entry is set: print to scree; Otherwise error message.

Utilities (functions that help implement other functions; implemented as static member function because an underlying class instance is not needed)

static bool getFlightDurationTime(AirportEnum orig, AirportEnum dest, unsigned
char& out_hrs, unsigned char& out_min)

If origin and destination are valid: input variables (hours and minutes)
are set with flight duration as in Table 3; return true. Otherwise: print
message; return false.

static bool getFlightArrivalTime(AirportEnum orig, AirportEnum dest, unsigned
char dpt_hrs_loc, unsigned char dpt_min_loc, unsigned char& arr_hrs_loc, unsigned
char& arr_min_loc)

If origin and dest. are valid: input variables (pass by reference) are set
with local time arrival (hours and min.) based on flight duration (Table 3);
return true. Otherwise: print message; return false.

static
airlD,

bool checkEntryVals(AirportEnum orig, AirportEnum dest, AirlinesEnum
int flCode, unsigned char dp_hr, unsigned char dp_min)

If all input values comply with the Basic Rules, then return true. If any
rule is violated, return false and print an error message.

Output a string for the corresponding input value. Examples:

static string value2string(AirlinesEnum airline) Input AirlinesEnum is BA: out string is “BA” or “British Airways”;
static string value2string(AirportEnum airp) . . . u ”
. . . - . . Input AirportEnum is London: out string is “London”;
static string value2string(unsigned char hour, unsigned char minute) . e)
static string value2string(int flCode) Inputs are hour=9, min=5: out string is “09:05";
Input flightcode is 502: string is “0502”
static int RandomValInBounds(int min val, int max_val) Output is a random integer within: [min_val, max_val]

Required Testing

Test your implementation with the test routines below. Each routine requires minimal modification to be adapted to your implementation and Basic Rules Option;
comment out any function calls that your implementation does not support yet. Call from main(); include all necessary header files. Report your test results as indicated in

5/12

EE3093 2021-22 MAIN: C++ Instructions

the The functions in Table 8 are assumed in the test routine in Table 6, which form the basis of the tests required to verify and demonstrate the correct behaviour of your
implementation. Include your test results (sample in Figure 1) in the Student Selection Document (follow the instructions therein).

Table 6: Test routines for class FlightTimetableEntry. Sample Outputs in Figure 1.

void test_helpers()
{
FlightTimetableEntry::AirportEnum orig, dest;
unsigned char dur_hrs, dur_min, dpt_hrs, dpt_min, arr_hrs, arr_min;
FlightTimetableEntry::AirlinesEnum airlD;
bool result; int flightCode;
/11777777717777777/ Input values for Test ////////////1/111/11711111117711117
orig = FlightTimetableEntry::Aberdeen; dest = FlightTimetableEntry::Esbjerg;
dpt_hrs = 9; dpt_min = 5; airID = FlightTimetableEntry::BA;
flightCode = 5100 + FlightTimetableEntry::RandomValInBounds(0,19);
A e e e E TP //
cout << "Test values: " << endl; cout << "Flight origin: " << FlightTimetableEntry::value2string(orig);
cout << " Flight destination: " << FlightTimetableEntry::value2string(dest) << endl;
cout << "Test getFlightDurationTime()" << endl;
result = FlightTimetableEntry::getFlightDurationTime(orig, dest, dur_hrs, dur_min);
if (result)
cout << "Flight duration (hh:mm) is " << FlightTimetableEntry::value2string(dur_hrs, dur_min) << endl;
else
cout << "No flight duration found" << endl;
[I7177
cout << endl << "Test getFlightArrivalTime()" << endl;
cout << "Flight departure time (hh:mm) is " << FlightTimetableEntry::value2string(dpt_hrs, dpt_min) << endl;
result = FlightTimetableEntry::getFlightArrivalTime(orig,dest,dpt_hrs,dpt_min,arr_hrs,arr_min);
if (result)
cout << "Arrival (local) time (hh:mm) is " << FlightTimetableEntry::value2string(arr_hrs, arr_min) << endl;
else
cout << "No Arrival time found" << endl;
L1177 77777777777777777777777777777777717777777777777711777
cout << endl << "Test checkEntryVals()" << endl;
cout << "Airline ID: " << FlightTimetableEntry::value2string(airID);
cout << ". Flight code: " << FlightTimetableEntry::value2string(flightCode) << endl;
result = FlightTimetableEntry::checkEntryVals(orig, dest, airID, flightCode, dpt_hrs, dpt_min);
if (result)
cout << "Flight entry is valid." << endl;
else
cout << "Flight entry NOT valid." << endl;
}

Table Continued overleaf

6/12

EE3093 2021-22 MAIN: C++ Instructions

void test_SettersAndGetters()

{

FlightTimetableEntry testEntry; FlightTimetableEntry::AirportEnum orig, dest;

unsigned char dur_hrs, dur_min, dpt_hrs, dpt_min, arr_hrs, arr_min;

FlightTimetableEntry::AirlinesEnum airID; bool result; int flCode;

//11111111111/11//] Input values for Test //////////1/11111111111111111111]]]

orig = FlightTimetableEntry::Aberdeen; dest = FlightTimetableEntry::Esbjerg;

dpt_hrs = 9; dpt_min = 5; airID = FlightTimetableEntry::BA; flCode = 5100;

[/ mmm e e oo //

cout << "Test values: << endl << "Flight origin: " << FlightTimetableEntry::value2string(orig);

cout << " Flight destination: " << FlightTimetableEntry::value2string(dest) << endl;

cout << "Flight departure time (hh:mm) is " << FlightTimetableEntry::value2string(dpt_hrs, dpt_min) << endl;

cout << "Airline ID: " << FlightTimetableEntry::value2string(airiID);

cout << ". Flight code: " << FlightTimetableEntry::value2string(flCode) << endl;

cout << "First, Test checkAndSetFTE()" << endl;

result = testEntry.checkAndSetFTE(orig, dest, airID, flCode, dpt_hrs, dpt_min);

if (!result)
cout << "FTE could not be set." << endl;

else

{
cout << "Done: FTE set." << endl << endl <<"Now Test getFTE() :" << endl;
orig = FlightTimetableEntry::Aberdeen; dest = FlightTimetableEntry::Aberdeen;// if all works, these values will not matter
dpt_hrs = 0; dpt_min = @; airID = FlightTimetableEntry::KL; flCode = 9999; // if all works, these values will not matter
result = testEntry.getFTE(orig, dest, airID, flCode, dpt_hrs, dpt_min, arr_hrs, arr_min, dur_hrs, dur_min);
if (result)

{
cout << "Airline ID: " << FlightTimetableEntry::value2string(airID);
cout << ". Flight code: " << FlightTimetableEntry::value2string(flCode) << endl;
cout << "Flight origin: " << FlightTimetableEntry::value2string(orig);
cout << " Flight destination: " << FlightTimetableEntry::value2string(dest) << endl;
cout << "Flight departure time (hh:mm) is " << FlightTimetableEntry::value2string(dpt_hrs, dpt_min) << endl;
cout << "Flight arrival (local) time (hh:mm) is " << FlightTimetableEntry::value2string(arr_hrs, arr_min) << endl;
cout << "Flight duration (hh:mm) is " << FlightTimetableEntry::value2string(dur_hrs, dur_min) << endl;
cout << "Done." << endl << endl << "Next check that the same result is obtained from printEntry():" << endl;
testEntry.printEntry();
cout << "Done." << endl << endl << "Finally reset:" << endl;
testEntry.reset();
testEntry.printEntry();
}
else

cout << "getFTE() did not work" << endl;

7/12

EE3093 2021-22 MAIN: C++ Instructions

B HMfeerdiccABDMNWURIABDMN My Courses\EE30934,2021-224EP\DecemberExan B3 Select Microsoft Visual Studie Debug Console

Test values:

Flight origin: Aberdeen. Flight destination:
Flight departure time (hh:mm) is 89:85
Airline ID: BA. Flight code: 5168

First, Test checkAndSetFTE()

FTE set.

Test wvalues:

Flight origin: Aberdeen. Flight destination: Esbjerg
Test getFlightDurationTime()

Flight duration (hh:mm) is @1:25

st getFlightArrivalTime()
h:mm) is 89:85
Now Test getFTE()
Airline ID: BA. Flight code: 5188
Flight origin: Aberdeen. Flight destination: Esbjerg
Fligpht departure time (hh:mm) is 89
Flight arrival (loc time :mm’
Flight duration {
Done.

Test checkEntryvals()
Airline ID: BA. Flight code: 5166
Flight entry is walid.

Mext check that the same result is obtained from printEntry():
Flight Timetable Entry:

Origin: Aberdeen

Destination: Esbjerg

Airline: British Airways

Flight Code: 51886

Scheduled Departure (local time): 89:85

Scheduled Arrival (local time): 11:38

Duration: 81:25
Done.

Finally reset:
Flight Timetable Entry Mot set |}

Figure 1: Sample output for test_helpers() on the left and test_SettersAndGetters() on the right (assuming Basic_Rules Option 0).

8/12

EE3093 2021-22 MAIN: C++

Marking:
Note: no mark awarded for implementing Basic_Rules different from the Option required (based on your ID).

Table 7: Marks allocation for Part 1 (out of 50 marks for the entire C++ assignment):

Instructions

Part 1 Marks (up to)
Class Implementation: well structured, tidy and clearly commented. 3
checkAndSetFTE(...): implementation and test (via test routine)
setRandomFTE(...): implementation and test (via test routine)
reset(): implementation and test (via test routine)
getFTE(...): implementation and test (via test routine) 2
getFlightDurationTime(...): implementation and test (via test routine) 2
getFlightArrivalTime(): implementation and test (via test routine) 2
checkEntryVals(...): implementation and test (via test routine) 3
printEntry(): implementation and test (via test routine) 2
value2string(...): implementation and test (via test routine) 4
getRandomVal(...): implementation and test (via test routine) 1
Reporting of Test results (as instructed in the Student Selection Document) 2

Tot Part 1 = 28 Marks

Part 2: Airport Timetable (22 marks out of 50)
Use FlightTimetableEntry as a building block for your next class, AirportFlightTimetable, which represents all daily
departures and arrivals in the timetable of your assigned airport in Table 8. Any timetable entry follows the Basic

Rules specified in the previous section; in addition, the following Airport Rules apply:

Table 8: Airport assignment. Your Option number is based on your student ID 7*" digit as in Table 1

Common Airport Rules (apply to all airports): A timetable cannot contain two entries (flights) that are

operated by the same Airline and have either of the following features:

o have the same origin & destination AND have the same departure/arrival time.

o have the same flight-code (regardless of the origin/destination and departure/arrival time)

Specific Airport Rules: These constrain: (/) the number of (international/local) departures/arrivals in a day
and in an hour; (ii) the minimum temporal separation between flights with given characteristics. All details

are given in Table 9 and are based on your student ID.

Aberdeen London Manchester Copenhagen

Esbjerg

Option 0 Option 1 Option 2 Option 3

Option 4

Table 9: Rules for your assigned airport (flight origin/destination). Option number based on student ID 6'" digit as in Table 1

Airport_Rules Option 0

Max number of Departing Flights in a day 30
Max number of Arriving Flights in a day 30
Max number of Departing Flights in any one hour (from xy:00 to xy:59) 5
Minimum time separation between any two departing flights with the same destination 15 min
Max number of Departing International Flights in any one hour (from xy:00 to xy:59) 3

9/12

EE3093 2021-22 MAIN: C++

Instructions

Airport_Rules Option 1

Max number of Departing Flights in a day 40
Max number of Arriving Flights in a day 40
Max number of Arriving Flights in any one hour (from xy:00 to xy:59) 6
Minimum time separation between any two flights arriving from the same origin 10 min
Max number of Arriving International Flights in any one hour (from xy:00 to xy:59) 4

Airport_Rules Option 2

Max number of Departing Flights in a day 35
Max number of Arriving Flights in a day 35
Max number of Departing Flights in any one hour (from xy:00 to xy:59) 6

Max number of Arriving Flights in any one hour (from xy:00 to xy:59) 5
Minimum time separation between any two Departing International flights 10 min

Airport_Rules Option 3

Max number of Departing Flights in a day 32
Max number of Arriving Flights in a day 36
Minimum time separation between any two departing flights with the same destination 10 min
Minimum time separation between any two flights arriving from the same origin 15 min
Minimum time separation between any two Arriving International flights 20 min

Airport_Rules Option 4

Max number of Departing Flights in a day 38
Max number of Arriving Flights in a day 34
Max number of Departing Flights in any one hour (from xy:00 to xy:59) 4
Minimum time separation between any two flights arriving from the same origin 12 min
Max number of Departing International Flights in any one hour (from xy:00 to xy:59) 2

Max number of Arriving International Flights in any one hour (from xy:00 to xy:59) 2

Details of the required implementation

Your class AirportFlightTimetable should support the public member functions in Table 10, along with any other

functions/variables required in your implementation.

Table 10: Required public functions for AirportFlightTimetable. Sample input/output in Table 11 & Figure 2. Marks in Table 11.

Function declaration

Description

bool checkEntryIsValid(const FlightTimetableEntry&
test_entry, boolverbose) const

which rule is broken.

Verify that an entry complies with both Common
and Specific Airport Rules. If it does: return true;
false otherwise. If vebose: print to screen info on

bool checkAndAddEntry(const FlightTimetableEntry&
test_entry)

If the entry is valid, add to the timetable and
return true; otherwise: false.

void printTimetable(tmtblCaseEnum ArrOrDepartOrBoth)
const

Print the Arrival/Departure timetable to screen
(sorted by Arrival/Departure time); input selects
which timetable to print (Arrival/Departures/Both)

bool isTimetableFull() const

True if the timetable is full; false otherwise.

10/12

EE3093 2021-22 MAIN: C++ Instructions

Required Testing
Test your implementation with the test routine given below to ensure it is correct. The routine requires minimal modification to be adapted to your implementation.

Table 11: Test routines for class AirportFlightTimetable. Sample Outputs in Figure 2

void testInsertion()

{
FlightTimetableEntry testEntry; FlightTimetableEntry::AirportEnum orig, dest, test_airport=FlightTimetableEntry::Aberdeen;
unsigned char dur_hrs, dur_min, dpt_hrs, dpt_min, arr_hrs, arr_min; FlightTimetableEntry::AirlinesEnum airID; bool result;
int flCode; AirportFlightTimetable ABD_Timetable; bool check; int flCode, tot_tests = 50;
for (int test_i = ©@; test_i < tot _tests; test_i++)
{
if (ABD_Timetable.isTimetableFull())
break;
cout << "Random entry " << test_i << ":" << endl;
while (true)
{
testEntry.reset(); testEntry.setRandomFTE();
if (testEntry.isEntrySet())
{
testEntry.getFTE(orig, dest, airID, flCode, dpt_hrs, dpt_min, arr_hrs, arr_min, dur_hrs, dur_min);
if (orig == test_airport || dest == test_airport)
{
cout << "Checking entry:" << endl; testEntry.printEntry();
check = ABD_Timetable.checkEntryIsvalid(testEntry, true);// print to screen the (first) rule that is violated
if (check)
{ // insert entry and print
cout << endl << "Entry is valid: Inserting Entry" << endl; check = ABD_Timetable.checkAndAddEntry(testEntry);
if (check)
{ cout << "Entry Added" << endl; ABD_Timetable.printTimetable(); }
else
{ cout << "Inserting Entry FAILED" << endl; return;}
break;
¥
else
cout << "Check Failed: Entry can't be added to current timetable; try a different one" << endl << endl;
}
}
else
cout << "Entry Not set" << endl;
}
cout << Mo-mmmmommooooooo " << endl;
¥
}

11/12

EE3093 2021-22 MAIN: C++

B8 H:\fverdiccABDNWURIABDN\MyCourses\EE309312021-22\EP\Dec

B H\fverdiccABDMN\UnIABDMNMyCourses\EE309312021-22\E

p
p
p
p
p
p
p
p

1

cheduled
Duration

olates rule:

Instructions

Figure 2: Output of random entry generation and insertion. Left: successful insertion of an entry; Middle: attempt to insert an
entry that violates one Airpot_Rule (assuming Airport_Rules Option 0). Right: attempt to insert an entry that violates a
Common_Airport Rule (same airline and flight code of an entry already in the timetable: position 19).

Marking:

Note: no mark awarded for implementing Airport_Rules different from the Option required (based on your ID).

Table 12: Marks allocation for Part2 (out of 50 marks for the entire C++ assignment):

Part 2 Marks (up to)
Class Implementation: well structured, tidy and clearly commented. 3
checkEntrylsValid (...): implementation and test (via test routine) 8

3 if Common Airport rule correct
5 if Specific Airport rule correct

checkAndAddEntry (...): implementation and test (via test routine)

4

printTimetable (...): implementation and test (via test routine)

isTimetableFull (...): implementation and test (via test routine)

Reporting of Test results (as instructed in the Student Selection Document)

3
2
3

Tot Part 2 = 22 Marks

12/12

	EE3093_20201-22_MAIN__Cpp_Only__INSTRUCTIONS.pdf
	Instructions to users
	Submission info

	Part 1: Flight Timetable basic components (28 marks out of 50)
	Introduction
	Details of the required implementation
	Required Testing
	Marking:

	Part 2: Airport Timetable (22 marks out of 50)
	Details of the required implementation
	Required Testing
	Marking:

