CST3110 — Testing and Verification
Coursework Project 1

Franco Raimondi

This document lays out the coursework project details. Contact me if you have any questions
about this document (£ .raimondi@mdx.ac.uk).

Read the entire document before starting work.

1 Project development and submission

Please follow the instructions below to the letter.

Environment: All work must be done in Eclipse, unless previously agreed with the Module
Leader. The submitted work consists of an Eclipse project of type Java Project. Select
this type when creating your Java project.

Naming: Your Eclipse project must have the name Coursework1CST3110. Give this name
when creating your Java project.

Files to get before starting: Download the file starter. zip from the My Learning page, un-
der “Coursework Project One”. Right-click on your Eclipse project in the Package Ex-
plorer and select Import > General > Archive File, then choose the file you just
downloaded.

Read, and make sure you understand, all the code included before starting work.

Before submitting: You may not submit code that does not compile. Syntax errors are not accept-
able; if you see red marks on your code, you are not ready for submission!

File to submit: A submission is a . zip file created by right-clicking on your project and then
selecting Export > General > Archive file. Namethe .zip file Coursework1CST3110
plus the . zip extension (i.e., Courseworkl1lCST3110.zip). Double-check the contents
of the . zip file before uploading.

Method: Submission is done electronically via the CST3110 My Learning page, under the
folder “Coursework Project 1”7, in “Project 1 submissions”. Upload the . zip file to submit
here. Please note that submission are anonymous: do not include in your files your name,
student ID or any other identity-revealing information.

Deadline: 23:55, Friday, 17th of December 2021.

20-point scale General scale
1 79% - 100%
2 76% - 78%

3 73% -75%
4 70% -72%
5 67% -69%
6 65% -66%
7 62% -64%
8 60% -61%
9 57% -59%
10 55% - 56%
11 52% - 54%
12 50% -51%
13 47% -49%
14 45% - 46%
15 42% - 44%
16 40% -41%
17 35% -39%
18 30% -34%
19 0% -29%
20 Non-participation

Grade Class of Honours
Degree

1

2 FIRST CLASS

3

4

5

6 UPPER SECOND

7

8

9

10 LOWER SECOND

1

12

13

14

15 THIRD

16

17 FAIL — MARGINAL
Compensation allowed

18 FAIL —
Compensation allowed

19 FAIL —
Compensation not allowed

20 FAIL- Incorporating failure

to participate in
assessment necessary to
achieve all learning
outcomes. Compensation
not allowed

Figure 1: Conversion (left) and classification (right) on the 20-point scale.

2 Introduction

Middlesex University (MDX) maintains a computer system for storing, converting and classify-

ing student grades.

2.1 The Middlesex 20-point scale

MDX does not use a percentage-scale for module grades. Instead it uses a 20-point scale that
starts with 1 (a first-class result) down to 20 (failure by non-participation). Conversion from
percentage-based grades to the 20-point scale is required in order to enter student grades into

the MDX system.

Guidelines for conversion exist in MDX’s academic regulations documents. Figure 1 (left) shows
the correspondence between the two scales.

Classification of a grade on the 20-point scale into first class, upper second class and so on, is

done according to Figure 1 (right).

Class/Bordetline Class of Qualification
3 2.2 2.1 1st
Pass Pass Merit Distinction
Lst/Distinction
(1-4)
2.1/Merit or better
2.2/Pass or better
(8-12)
3/Pass or better 100% 25% 25%
(13-16) MAX MAX

Figure 2: Profile classification at MDX.

2.2 Honours degree classification

An undergraduate student completing their study is awarded a degree classified as first class,
upper second, etc. The rules for degree classification at MDX are presented here. From now on,
a grade is always in the 20-point scale.

A profile is a list of grades. A level 6 profile only contains the grades obtained in the third year of
study. A level 5 profile contains the grades obtained in the second and third years. Assuming four
modules per year, level 6 profiles have four grades and level 5 profiles have eight grades.!

When a student completes the study for their degree, the degree class is decided as follows.
1. Two profiles are created using the student grades: the level 5 profile and the level 6 profile.

2. Each profile is classified as first class, upper second class, lower second class or third class
as indicated in Figure 2.

Specifically, if 50% of grades in the profile are first-class then the profile is first class.
Otherwise, if 50% of grades are upper second or above, then the profile is upper second
class. Otherwise, if 50% of grades are lower second or above, then the profile is lower
second class. Otherwise, the profile is classified as third class.

3. Each profile is also marked as clear or borderline according to the bottom row of Figure 2.

Namely, if the profile is classified as first or upper second class then it is a clear profile
if the third class grades in the profile are no more than 25% of the total, otherwise the
profile is borderline. Lower second and third class profiles are always clear.

4. The following rules are then applied to decide which degree classification is awarded.
(a) If both profiles have the same classification then that classification is awarded.

(b) Otherwise, if the level 6 profile is better and that profile is clear, and no more than
one class above the level 5 profile, then the level 6 profile classification is awarded.

(c) Otherwise, if the level 5 profile is better and that profile is clear, and no more than
one class above the level 6 profile, then the level 5 profile classification is awarded.

(d) Otherwise, a procedure called discretion is applied.

1 For simplicity, we assume that we only deal with full-time undergraduates on a three-year degree (with four mod-
ules per year) who never repeat a year, fail a module, defer, interrupt or otherwise deviate from the standard pattern.

3 Requirements

3.1 The class Grade

The class Grade holds a grade in the MDX 20-point scale. The requirements are:
* The constructor must throw I1legalArgumentException if its input is outside 1-20.

* The static method fromPercentage creates a Grade object. If the input is within 0-100
then the grade returned is determined according to Figure 1 (left). If the argument is the
number -1 then the grade 20 (non-participation) is returned. The method must throw an
IllegalArgumentException if its argument is not within 0-100, nor -1.

¢ The method classify returns the Classification (first, upper second, etc) of the
current grade object (as stored in the points field) according to Figure 1 (right). We use
a single fail classification for simplicity.

3.2 The class Profile

This class holds a profile. All requirements below are as explained in Section 2.2.

* The constructor takes a list of grades to be inserted in the profile. It must throw an
IllegalArgumentException if there are any fail grades, or if the list is empty or null.

* The method isClear must return true if the current profile is clear, and false if the
profile is borderline.

* The classify method must return the classification of the current profile.

3.3 The class Degree

This class represents a degree to be awarded to a student.

* The constructor takes two Lists of Grades for years two and three respectively. It must
throw an IllegalArgumentException whenever either list given is null, does not
contain four grades, or contains a fail grade.

* The method classify must return the correct degree classification, as in Section 2.2.

4 Project tasks

Task 1: For each class below, design and implement (with jUnit) the following tests.

e Class Grade:

TWO tests for inputs below and above the valid range for the constructor.

ONE test for a valid input, checking that getPoints returns the right value.

FIVE tests for classify, using Classifications as equivalence classes.

TWO tests for inputs below and above the valid range for fromPercentage.

TWENTY tests for fromPercentage, using each point in the 20-point scale as
an equivalence class.

* Class Profile:
— THREE tests for the constructor, one for each distinct way input can be invalid.

— SIX tests, one for each possible combination of Classification and truth
value (whether the profile is clear or not) as an equivalence class.

e Class Degree:
— THREE tests for the constructor, one for each distinct way input can be invalid.
— FIVE tests, using Classifications as equivalence classes.

Task 2: Implement the functionality required to pass the tests, with requirements as described
in Section 3.

You are encouraged to write additional tests if it helps with development. These tests will not
be assessed directly, but will contribute towards coverage (see next task).

Task 3: Achieve maximum branch coverage of the methods listed below. If necessary, do this
by adding new tests. If it is impossible to achieve maximum coverage by adding tests,
consider whether your implementation can be improved (e.g., by eliminating dead code).

e Class Grade: constructor, classify, fromPercentage.
e Class Profile: constructor, classify, isClear.
e Class Degree: constructor, classify.

Here, coverage of a method (say, Grade.classify) will be measured by adding up the
coverage reports on all tests for that method produced in tasks 1 (above) and 3 (this one).

New tests produced as part of this task should be written into a new source file per class
(e.g., GradeTestCoverage. java, ProfileTestCoverage. java, etc).

5 Guidelines

Do
* override Object-derived methods such as equals or toString, if necessary;
* add standard Java methods, such as compareTo, if necessary;
* add private methods and fields, if necessary;
* use a wide range of jUnit assertions and features such as parameterised tests;
* modify the bodies of the methods indicated in the starter code;
» write code that is clear, readable and consistently indented.
Do not
* change any public interfaces (method names, accessibility modifiers, types);
* add or remove any public methods;
* modify the class Classification;
* submit code that does not compile;

* email me your submission.

6 Assessment

1. The coursework is for individual work, not teamwork.

2. Late submissions will not be allowed. Continuous re-submission is possible, so you can
submit a draft version early and keep submitting improved versions until the deadline.

3. Grading:

Class Total Implementation Tests Coverage

Grade 30% 10% 15% 5%
Profile 40% 20% 15% 5%
Degree 30% 10% 10% 10%
Total 100% 40% 40% 20%

4. Implementations will be assessed using the following criteria:
(a) Implementation correctness.
(b) Code clarity and readability.
5. Test suites will be assessed using the following criteria:
(a) Agreement between test input selection and assertions with requirements.
(b) Test code clarity and readability.

Note: tests that fail may still contribute positively to your grade.

