
Software engineering is concerned with numerous activities that stretch far beyond the
programming and debugging of code. It is a collective term that encompasses a range of
processes designed to provide context and validation to development, and to better prepare
for and sustain the production of software. In fact, programming ability may be far down the
list of requisite skills when looking to recruit software engineers. A software engineer is an
expert in identifying the need for software, designing appropriate solutions, and documenting
design efforts.

1.1 Expectation of Written Representation at an MSc Level

It goes without saying that academic writing uses formal vocabulary as compared to the
vocabulary used in day-day communication. Your aim should be to make your text as clear
as possible – to present your ideas clearly and concisely and to avoid ambiguity or
redundancy. The tone of academic writing is formal with clear focus on the issue or topic
rather than your opinion. Academic writing is defined by conventions rather than specific
rules.

As future software engineering leaders, we aspire our students to work to a high professional
standard and use relevant formal vocabulary to engage in a critical/analytical discourse as
part of their report specification. It also goes without saying that grammar and punctuation
need to be impeccable and that you need to be clear on the accuracy of the required
vocabulary for this module. If in doubt please refer to the Sommerville textbook or ask the
module leader. We wish to bring out the best in our students and we highly value originality
and individuality in their written work. We therefore, provide you with all the tools that you will
need to model your answers but we do not provide model answers to students to template
off. We also do not provide model answers on the online forum in response to questions you
may ask of us.

1.2 Submission Report

This section details the report deliverable written to high professional standard. At least that
is what aspire from our students. Your report must be a maximum of 15 pages, including
diagrams but excluding any references. An allowance of +10% is made for this page limit.
The marker will not read beyond this. Your report should be written using font size 12 (or
other standard size). Please include appropriate section headings and page numbers in the
footer. The core course material is sufficient to pass this assignment well. Reading extra
material can be helpful to inspire and refine your solutions. Write from what you know using
formal vocabulary and formal definitions, and then move on if needed and if time allows. You
are not required to 1 read beyond the core material, but any additional sources of
information should be correctly referenced. Your report should include the sections below.
The first page needs to be a cover page with you the assignment title SE1 Assignment
Report and must not include your name anywhere and the first page is not counted as part
of the page count of your written report. The assignment deadline can be found on Engage.
You must submit a PDF file to the Engage assignment page by the submission deadline
shown above. Submissions received after this deadline will be capped at 40% if received
within 5 working days. Any submissions received after 5 working days will be marked at 0%.
If you have a valid reason for an extension, you must submit an extension request through
your Director of Studies – unit leaders cannot grant extensions. You should leave yourself

time to download your file from Engage and check that you have attached the correct file,
with the content that you want to be marked. You are responsible for checking that you are
submitting the correct material to the correct assignment.

2 Assignment

You are welcome to ask about a particular process and we will provide a client response
where appropriate. However, you do not need to redo any work if you see that someone
asks about a process that you have already modelled and made assumptions for. Do feel
free to have fun with this assignment and be creative. We will be looking at your models,
whether they reflect other parts of your design/requirements, and the accompanying
justifications. This is an introductory unit where we are interested in your decisions as a
future software engineering leader and understanding of the material. Posting Online in
Forums. We encourage you to post all your questions on the forum but we need to remind
you that if responding to you means that we are answering a question which is a potential
solution; we may refrain a response and our decision stands. Ultimately, we want you to
become confident software engineering leaders who are confident with using their tools and
engage in a good academic discourse.

2.1 Requirements, 30%

The proposed requirements placed in the booked library brief have several issues. There are
deliberate omissions in the scenario so that you have room to be creative in your designs.
You could come up with anything else that you think would be a good and justifiable addition
to the system requirements for book loans. In a real world software engineering project,
there would be some interaction with a client, who may want more or less involvement in the
design process of the system. In this assignment, the role of the client is played by members
of the teaching team, who have prepared the brief provided and are now passing design
decisions to you.

• Identify five issues with the proposed functional/non-functional requirements in the Booking
brief. We want you to reflect and identify what these issues might be and write about them;
provide justifications for each point. [10%]
• A list of pertinent system and user requirements for Functional Requirement 4 (book loans)
and be clear about separating them into user requirements and system requirements. [20%].
• Do not include all system/user requirements, just new ones that you have created. In your
requirements, you need to demonstrate that you have provided consistent requirements that
show a clear and complete distinction between what the system shall accomplish
(requirement) and how a feature is implemented(design) and a clear distinction between the
system requirements and user requirements.

You have to show that you have done dependency checks between requirements; you have
done conflict check between requirements and demonstrate how you have resolved the
conflicts between requirements and how you have demonstrated measurability in you
requirements. You will be creating the details of these requirements yourself, so the book
loaning and any other associated processes are up to you. You are not expected to modify
the existing set of requirements, but can indicate if you think your requirements will affect
existing ones.

Measurability can be demonstrated by your requirements in the following ways; this list is not
exhaustive: Complete, Traceable (using a traceability matrix is fine), Consistent, identify the
constraints placed on the requirement(s) and as this list is not exhaustive so we will be
happy to accept any other method you have chosen to demonstrate how you will measure
your requirements. We do not expect you to divert to non-functional requirements.

These are some ways in which you can show that you have worked to measured your
requirements. You can show this with examples as part of your booked brief.

This list is not exhaustive and you can bring in further ways of measuring your
requirements.

o Completeness – Each requirement should be complete. This can be
demonstrated by the fact that it clearly and distinctively translates into a relevant and
distinct system feature and there is a clear indication that all its sub-requirements
are exhibited by a clear dependency structure and any conflicts are resolved. Again,
make sure that the students do not use attributes in place of sub-requirement.

o Traceable – This does not require any skill outside of the material stated, but
traceability needs to be demonstrated through either linkage between requirements
using a clear numbering system or traceability matrix or even a traceability tree
diagram all which are focused on showing the linkages between all the requirements
for a given module. Here is a link from Sommerville that shows how to construct a
traceability matrix. A traceability matrix can be designed to view conflicts, check for
dependencies, check for "resolved conflicts". You can also construct a tree diagram
if you want but choosing one representation approach over another does not affect
your grading as long as whichever approach you have shown is clearly explained.

o Consistency Check – Requirements need to be consistent throughout; with each
other; consistency can be checked by examining each requirement in relation to each
other for completeness and compatibility. For a given requirement, are all the sub
requirements also system requirements? and same in the case of user requirements.

o Testable –Common sense checking on the student’s part to demonstrate that the
stated requirement is specific and could be easily mapped to a system feature,
unambiguous and quantitative where possible.

o Constraints – During the requirements engineering phase, students may identify
constraints that they identify could be placed on the requirement and it is essential
that these are not design constraints; these could also be explained via
pre-condition/post-condition checks/ source-destination/alternative conditions.

https://iansommerville.com/software-engineering-book/web/traceability/

o Pertinent: they do not include unnecessary details/ introduce details outside the
scope of the system specification in the requirement without clear assumptions/
adding non-functional aspects into the functional requirement. Makes logical sense.

Below are some examples, but we are also open to other written representations that you
choose to use to explain your requirements.

1. You can present them as follows

(Precondition - PRC, Post Condition - POC, Conflict - CF, Dependency - Dx)

System

Fx1.x State your high-level functional requirement

Fx1.a State your sub-level functional requirement (PRC-None, POC- None, CF - Fx.b, Dx -
Fx.q)

Continue this way, you can choose to write your own notation for Precondition, Post
Condition Conflict, Dependency or you can choose to use the notations of the ones that I
have presented to you here.

Continue this way with the user requirements, using the same notations.

2. Another way to present your requirements, you will be able to use a table.

Requirement
(Functional/Non-fu
nctional)

Pre-conditio
n

Post-Conditi
on

Dependencies Conflict Resolution

System
Requirement

Fx.2.1 -write the
whole requirement

Fx.1.1 Fx2.2. Fx2.1- 2.y So here you need to
explain what you did
to resolve the conflict
you spotted between
the two requirements.
Simply stating the
requirement conflict is
not enough – what did
you do to “resolve” the
conflict – what did you
do? You need to show
your decision making.

Fx2.2- write the
whole requirement

…. …… ……

User Requirement

Ux1.2 - write the
whole requirement

State which
requirement
or feature is
a
pre-conditio
n. This
could be a
user or
system
requirement

State which
requirement
or feature is
a
post-conditio
n. This could
be a user or
system
requirement

State what is
the
dependency
here.

Again, explain what
conflict was resolved
and if there isn’t a
conflict then say so
and why is there no
conflict for this
requirement.

Conflict Checks - These are checks that ensure that given two requirements are in
not in conflict with each other. Lets take an example, say you have a system
requirement as follows.

Fx.y The system should allow for the available parking slots to be displayed on the
parking display.

Fx.p The system should allow for a chosen slot to be booked for reservation or
immediate use.

Now this is a situation where 2 system requirements can be in conflict with each
other, so the slot which is being reserved must NOT appear as part of the available
slots for booking parking reservations. This is a case where a conflict will arise if a
new user is trying to book the same slot that is part of the ongoing booking. Now,
this is something you will need to think if such a conflict arises in your booked brief
or not?

Dependency Checks - Now using the same scenario above, we can make sure that
we run a dependency check where Fx.y is dependent on checking Fx.p in order for a
booking to proceed forward. So Fx.y must not include the slot that is part of the
ongoing booking, hence Fx.y is part of dependency check as part of the checks you
will be doing.

This is an example of how you can demonstrate conflict and dependency checks,
you can take some of the requirements and demonstrate this through an example
and written explanation. You are not expected to do this for all requirements but only
some. This is an example of demonstration.

2.2 Architectural Design, 30%

This section must include
• An architectural design for your system using suitable notation.
• A written justification which includes a comparison between 1-2 other architectures. It is
important that you understand how to write justifications; simply describing your viewpoint is
not enough and we encourage our students to write a critical analytical argument for the
choice of the architectures and why you have selected this one.
• A clear list of non-functional requirements which are supported by clear justifications;
should you to choose to discuss/include these when you compare different architecture
styles and their suitability.

You may want to refer to the architectural patterns lesson for this. You also need to read the
study skills required for the SE1 unit on the online forum post so that you can get an
understanding of the expectation of written representation at an MSc Level. To show
diagrams of your architecture models, you should use suitable abstractions and connection
to requirements and accurate notations. Your justifications should include selected design,
comparisons against alternatives.

Note: Since how people would approach varies, we have given a broad choice here.
Some students would like list NEW non-functional requirements and use these as the
basis in their architecture, as they feel it pertinent to the architecture style, some may
not choose to use this approach. How you choose to use the non-functional
requirements is your application choice.

When you attempt the question on comparing and contrasting system architectures,
we are happy for you use the following architecture characteristics for comparing
and contrasting two system architecture styles. These are as follows.

1. Availability
2. Reliability
3. Testability
4. Scalability
5. Security
6. Agility
7. Fault Tolerance
8. Elasticity
9. Recoverability
10.Performance
11.Deployment
12.Learnability

2.3 System Models, 30%

This section should include:
• A set of system models using suitable notation. It will not be possible to model the entire
system in a 15 page document, so be selective and model a few key functionalities. We
suggest that your system models should include: A model showing the context of the system
(business process model or context model).
1) A use case diagram(s).
2) 1-2 sequence diagrams modelling some key functionality in your system. Note: you are
not expected to create models for the entire system.
3) A class diagram.
• The System models should include suitable and accurate notations for your choice of
modelling, use of suitable abstractions and connection to requirements. A minimal
description for each system model should be included. This should describe what is being
modeled and explain why it is being modeled. • The justifications of your system models
must include a balanced critique of the aforementioned system models.

2.4 Presentation Report, 10%

The overall quality of your presentation will be graded for professional presentation,
coherence, grammar, punctuation and the quality of your written report

