
CSC252 Final

Maximum time allowed <do a good job> (60pts)

Write the class MemBuf that represents memory in a program in the following manner:

The MemBuf class has three private data members

 a char* pointer named m_data.

 a size_t variable named m_capacity.

 a size_t variable named m_pos which indicates the position in the char array up to which the MemBuf

is used.

Write a main function that shows the use of every one of the functions you write below. [15]

Write code for the following:

(i) Write a public implementation of an argument based constructor for the class MemBuf that takes a size_t

parameter x and allocates the private internal data member m_data to be large to hold x chars using

operator new. You must then fill the character array m_data with the character ‘0’ completely using a for

loop. (do not use bzero) [5].

(ii) Write a public implementation of a default constructor (no args) of the class MemBuf which allocates a

default buffer of size 1024 bytes. [5]

(iii) Write the destructor for class MemBuf. [3]

(iv) Write a public deep copy constructor for class MemBuf. [5]

(v) Write a public deep copy assignment operator (=) for class MemBuf. [5]

(vi) Write a public getter method to get the variable m_capactity of MemBuf. [1]

(vii) Write a public method called size() which returns the m_pos variable. [1]

(viii) Write a public method alloc on the class which takes a size_t variable len. If m_pos + len exceeds

m_capacity the method should throw an exception of type std:: bad_alloc. If m_pos + len is equal to or less

than m_capacity it should advance m_pos by len and fill the array m_data with the character ‘a’ up to the

new position to indicate ‘allocated’. [5]

(ix) Write a public method dealloc on the class which takes a size_t variable len and moves the position

variable m_pos back by len. If len exceeds the current value of m_pos the method should throw an

exception of type std::runtime_error. If len is less than or equal m_pos it should retard m_pos by len and

fill the emptied part of the array m_data with the character ‘0’ to indicate that it is now unallocated. [5]

(x) Write a global operator<< which prints the contents of the buffer for each location as the 8 bit numeric

ascii value of each char. It should do this for only that part of the buffer which is occupied. [5]

(xi) Write an type conversion operator that returns the m_data data member as a const value.[5]

