
139

5
Procedures

5.1 Stack Operations
5.1.1 Runtime Stack (32-Bit Mode)
5.1.2 PUSH and POP Instructions
5.1.3 Section Review

5.2 Defining and Using Procedures
5.2.1 PROC Directive
5.2.2 CALL and RET Instructions
5.2.3 Nested Procedure Calls
5.2.4 Passing Register Arguments to

Procedures
5.2.5 Example: Summing an Integer Array
5.2.6 Saving and Restoring Registers
5.2.7 Section Review

5.3 Linking to an External Library
5.3.1 Background Information
5.3.2 Section Review

5.4 The Irvine32 Library
5.4.1 Motivation for Creating the Library

5.4.2 Overview
5.4.3 Individual Procedure Descriptions
5.4.4 Library Test Programs
5.4.5 Section Review

5.5 64-Bit Assembly Programming
5.5.1 The Irvine64 Library
5.5.2 Calling 64-Bit Subroutines
5.5.3 The x64 Calling Convention
5.5.4 Sample Program that Calls a Procedure

5.6 Chapter Summary
5.7 Key Terms

5.7.1 Terms
5.7.2 Instructions, Operators, and Directives

5.8 Review Questions and Exercises
5.8.1 Short Answer
5.8.2 Algorithm Workbench

5.9 Programming Exercises

This chapter introduces you to procedures, also known subroutines and functions. Any program of
reasonable size needs to be divided into parts, and certain parts need to be used more than once.
You will see that parameters can be passed in registers, and you will learn about the runtime stack
that the CPU uses to track the calling location of procedures. Finally, we will introduce you to two
code libraries supplied with this book, named Irvine32 and Irvine64, containing useful utilities that
simplify input–output.

140 Chapter 5 • Procedures

5.1 Stack Operations
If we place ten plates on each other as in the following diagram, the result can be called a stack.
While it might be possible to remove a dish from the middle of the stack, it is much more com-
mon to remove from the top. New plates can be added to the top of the stack, but never to the
bottom or middle (Fig. 5–1):

Figure 5–1 Stack of plates

A stack data structure follows the same principle as a stack of plates: New values are added to
the top of the stack, and existing values are removed from the top. Stacks in general are useful
structures for a variety of programming applications, and they can easily be implemented using
object-oriented programming methods. If you have taken a programming course that used data
structures, you have worked with the stack abstract data type. A stack is also called a LIFO struc-
ture (Last-In, First-Out) because the last value put into the stack is always the first value taken out.

In this chapter, we concentrate specifically on the runtime stack. It is supported directly by
hardware in the CPU, and it is an essential part of the mechanism for calling and returning from
procedures. Most of the time, we just call it the stack.

5.1.1 Runtime Stack (32-Bit Mode)
The runtime stack is a memory array managed directly by the CPU, using the ESP (extended
stack pointer) register, known as the stack pointer register. In 32-bit mode, ESP register holds a
32-bit offset into some location on the stack. We rarely manipulate ESP directly; instead, it is indi-
rectly modified by instructions such as CALL, RET, PUSH, and POP.

ESP always points to the last value to be added to, or pushed on, the top of stack. To demon-
strate, let’s begin with a stack containing one value. In Fig. 5-2, the ESP contains hexadecimal
00001000, the offset of the most recently pushed value (00000006). In our diagrams, the top of the
stack moves downward when the stack pointer decreases in value:

Figure 5–2 A stack containing a single value

1
2
3
4
5
6
7
8
9
10 Top

Bottom

00000006 ESP � 00001000h00001000

Offset

00000FF8

00000FF4

00000FF0

00000FFC

5.1 Stack Operations 141

Each stack location in this figure contains 32 bits, which is the case when a program is running
in 32-bit mode.

Push Operation
A 32-bit push operation decrements the stack pointer by 4 and copies a value into the location in
the stack pointed to by the stack pointer. Figure 5-3 shows the effect of pushing 000000A5 on a
stack that already contains one value (00000006). Notice that the ESP register always points to
the last item pushed on the stack. The figure shows the stack ordering opposite to that of the
stack of plates we saw earlier, because the runtime stack grows downward in memory, from
higher addresses to lower addresses. Before the push, ESP � 00001000h; after the push, ESP �
00000FFCh. Figure 5-4 shows the same stack after pushing a total of four integers.

Figure 5–3 Pushing integers on the stack.

Figure 5–4 Stack, after pushing 00000001 and 00000002.

Pop Operation
A pop operation removes a value from the stack. After the value is popped from the stack, the
stack pointer is incremented (by the stack element size) to point to the next-highest location in the
stack. Figure 5-5 shows the stack before and after the value 00000002 is popped.

The runtime stack discussed here is not the same as the stack abstract data type (ADT) discussed in
data structures courses. The runtime stack works at the system level to handle subroutine calls. The
stack ADT is a programming construct typically written in a high-level programming language such
as C++ or Java. It is used when implementing algorithms that depend on last-in, first-out operations.

00000006 00000006

ESP

00001000

00000FFC

00000FF8

00000FF4

00000FF0

000000A5

ESP00001000

Before

00000FFC

00000FF8

00000FF4

00000FF0

After

ESP

00001000

Offset

00000FFC

00000FF8

00000FF4

00000FF0

00000006

000000A5

00000001

00000002

142 Chapter 5 • Procedures

Figure 5–5 Popping a value from the runtime stack.

The area of the stack below ESP is logically empty, and will be overwritten the next time the
current program executes any instruction that pushes a value on the stack.

Stack Applications
There are several important uses of runtime stacks in programs:

• A stack makes a convenient temporary save area for registers when they are used for
more than one purpose. After they are modified, they can be restored to their original
values.

• When the CALL instruction executes, the CPU saves the current subroutine’s return address
on the stack.

• When calling a subroutine, you pass input values called arguments by pushing them on the stack.
• The stack provides temporary storage for local variables inside subroutines.

5.1.2 PUSH and POP Instructions

PUSH Instruction
The PUSH instruction first decrements ESP and then copies a source operand into the stack.
A 16-bit operand causes ESP to be decremented by 2. A 32-bit operand causes ESP to be decre-
mented by 4. There are three instruction formats:

PUSH reg/mem16
PUSH reg/mem32
PUSH imm32

POP Instruction
The POP instruction first copies the contents of the stack element pointed to by ESP into a 16- or
32-bit destination operand and then increments ESP. If the operand is 16 bits, ESP is incre-
mented by 2; if the operand is 32 bits, ESP is incremented by 4:

POP reg/mem16
POP reg/mem32

PUSHFD and POPFD Instructions
The PUSHFD instruction pushes the 32-bit EFLAGS register on the stack, and POPFD pops the
stack into EFLAGS:

pushfd
popfd

Before

00000006

000000A5

00000001

00000002 ESP

After

00000006

000000A5

00000001
ESP

00001000

00000FFC

00000FF8

00000FF4

00000FF0

00001000

00000FFC

00000FF8

00000FF4

00000FF0

5.1 Stack Operations 143

The MOV instruction cannot be used to copy the flags to a variable, so PUSHFD may be the
best way to save the flags. There are times when it is useful to make a backup copy of the flags
so you can restore them to their former values later. Often, we enclose a block of code within
PUSHFD and POPFD:

pushfd ; save the flags
;
; any sequence of statements here...
;
popfd ; restore the flags

When using pushes and pops of this type, be sure the program’s execution path does not skip
over the POPFD instruction. When a program is modified over time, it can be tricky to remem-
ber where all the pushes and pops are located. The need for precise documentation is critical!

A less error-prone way to save and restore the flags is to push them on the stack and immedi-
ately pop them into a variable:

.data
saveFlags DWORD ?
.code
pushfd ; push flags on stack
pop saveFlags ; copy into a variable

The following statements restore the flags from the same variable:

push saveFlags ; push saved flag values
popfd ; copy into the flags

PUSHAD, PUSHA, POPAD, and POPA
The PUSHAD instruction pushes all of the 32-bit general-purpose registers on the stack in the following
order: EAX, ECX, EDX, EBX, ESP (value before executing PUSHAD), EBP, ESI, and EDI. The
POPAD instruction pops the same registers off the stack in reverse order. Similarly, the PUSHA instruc-
tion, pushes the 16-bit general-purpose registers (AX, CX, DX, BX, SP, BP, SI, DI) on the stack in the
order listed. The POPA instruction pops the same registers in reverse. You should only use PUSHA and
POPA when programming in 16-bit mode. We cover 16-bit programming in Chapters 14–17.

If you write a procedure that modifies a number of 32-bit registers, use PUSHAD at the
beginning of the procedure and POPAD at the end to save and restore the registers. The follow-
ing code fragment is an example:

MySub PROC
pushad ; save general-purpose registers
.
.
mov eax,...
mov edx,...
mov ecx,...
.
.
popad ; restore general-purpose registers
ret

MySub ENDP

144 Chapter 5 • Procedures

An important exception to the foregoing example must be pointed out; procedures returning
results in one or more registers should not use PUSHA and PUSHAD. Suppose the following
ReadValue procedure returns an integer in EAX; the call to POPAD overwrites the return value
from EAX:

ReadValue PROC
pushad ; save general-purpose registers
.
.
mov eax,return_value
.
.
popad ; overwrites EAX!
ret

ReadValue ENDP

Example: Reversing a String
Let’s look at a program named RevStr that loops through a string and pushes each character on
the stack. It then pops the letters from the stack (in reverse order) and stores them back into
the same string variable. Because the stack is a LIFO (last-in, first-out) structure, the letters in
the string are reversed:

; Reversing a String (RevStr.asm)

.386

.model flat,stdcall

.stack 4096
ExitProcess PROTO,dwExitCode:DWORD

.data
aName BYTE "Abraham Lincoln",0
nameSize = ($ - aName) - 1

.code
main PROC
; Push the name on the stack.

mov ecx,nameSize
mov esi,0

L1: movzx eax,aName[esi] ; get character
push eax ; push on stack
inc esi
loop L1

; Pop the name from the stack, in reverse,
; and store in the aName array.

mov ecx,nameSize
mov esi,0

L2: pop eax ; get character
mov aName[esi],al ; store in string
inc esi

5.2 Defining and Using Procedures 145

loop L2

INVOKE ExitProcess,0
main ENDP
END main

5.1.3 Section Review
1. Which register (in 32-bit mode) manages the stack?

2. How is the runtime stack different from the stack abstract data type?

3. Why is the stack called a LIFO structure?

4. When a 32-bit value is pushed on the stack, what happens to ESP?

5. (True/False): Local variables in procedures are created on the stack.

6. (True/False): The PUSH instruction cannot have an immediate operand.

5.2 Defining and Using Procedures
If you’ve already studied a high-level programming language, you know how useful it can be to
divide programs into subroutines. A complicated problem is usually divided into separate tasks
before it can be understood, implemented, and tested effectively. In assembly language, we typi-
cally use the term procedure to mean a subroutine. In other languages, subroutines are called
methods or functions.

In terms of object-oriented programming, the functions or methods in a single class are
roughly equivalent to the collection of procedures and data encapsulated in an assembly lan-
guage module. Assembly language was created long before object-oriented programming, so it
doesn’t have the formal structure found in object-oriented languages. Assembly programmers
must impose their own formal structure on programs.

5.2.1 PROC Directive

Defining a Procedure
Informally, we can define a procedure as a named block of statements that ends in a return state-
ment. A procedure is declared using the PROC and ENDP directives. It must be assigned a name (a
valid identifier). Each program we’ve written so far contains a procedure named main, for example,

main PROC
.
.
main ENDP

When you create a procedure other than your program’s startup procedure, end it with a RET
instruction. RET forces the CPU to return to the location from where the procedure was called:

sample PROC
.
.

 ret
sample ENDP

146 Chapter 5 • Procedures

Labels in Procedures
By default, labels are visible only within the procedure in which they are declared. This rule
often affects jump and loop instructions. In the following example, the label named Destination
must be located in the same procedure as the JMP instruction:

jmp Destination

It is possible to work around this limitation by declaring a global label, identified by a double
colon (::) after its name:

Destination::

In terms of program design, it’s not a good idea to jump or loop outside of the current procedure.
Procedures have an automated way of returning and adjusting the runtime stack. If you directly
transfer out of a procedure, the runtime stack can easily become corrupted. For more informa-
tion about the runtime stack, see Section 8.2.

Example: SumOf Three Integers
Let’s create a procedure named SumOf that calculates the sum of three 32-bit integers. We will
assume that relevant integers are assigned to EAX, EBX, and ECX before the procedure is
called. The procedure returns the sum in EAX:

SumOf PROC
 add eax,ebx
 add eax,ecx
 ret
SumOf ENDP

Documenting Procedures
A good habit to cultivate is that of adding clear and readable documentation to your programs.
The following are a few suggestions for information that you can put at the beginning of each
procedure:

• A description of all tasks accomplished by the procedure.
• A list of input parameters and their usage, labeled by a word such as Receives. If any input

parameters have specific requirements for their input values, list them here.
• A description of any values returned by the procedure, labeled by a word such as Returns.
• A list of any special requirements, called preconditions, that must be satisfied before the pro-

cedure is called. These can be labeled by the word Requires. For example, for a procedure
that draws a graphics line, a useful precondition would be that the video display adapter must
already be in graphics mode.

With these ideas in mind, let’s add appropriate documentation to the SumOf procedure:

The descriptive labels we’ve chosen, such as Receives, Returns, and Requires, are not absolutes;
other useful names are often used.

5.2 Defining and Using Procedures 147

;---
; sumof
;
; Calculates and returns the sum of three 32-bit integers.
; Receives: EAX, EBX, ECX, the three integers. May be
; signed or unsigned.
; Returns: EAX = sum

SumOf PROC

add eax,ebx
add eax,ecx
ret

SumOf ENDP

Functions written in high-level languages like C and C++ typically return 8-bit values in AL,
16-bit values in AX, and 32-bit values in EAX.

5.2.2 CALL and RET Instructions
The CALL instruction calls a procedure by directing the processor to begin execution at a new mem-
ory location. The procedure uses a RET (return from procedure) instruction to bring the processor
back to the point in the program where the procedure was called. Mechanically speaking, the CALL
instruction pushes its return address on the stack and copies the called procedure’s address into the
instruction pointer. When the procedure is ready to return, its RET instruction pops the return address
from the stack into the instruction pointer. In 32-bit mode, the CPU executes the instruction in mem-
ory pointed to by EIP (instruction pointer register). In 16-bit mode, IP points to the instruction.

Call and Return Example
Suppose that in main, a CALL statement is located at offset 00000020. Typically, this instruc-
tion requires 5 bytes of machine code, so the next statement (a MOV in this case) is located at
offset 00000025:

 main PROC
00000020 call MySub
00000025 mov eax,ebx

Next, suppose that the first executable instruction in MySub is located at offset 00000040:

 MySub PROC
00000040 mov eax,edx

 .
 .
 ret
 MySub ENDP

When the CALL instruction executes (Fig. 5-6), the address following the call (00000025) is
pushed on the stack and the address of MySub is loaded into EIP. All instructions in MySub
execute up to its RET instruction. When the RET instruction executes, the value in the stack

148 Chapter 5 • Procedures

pointed to by ESP is popped into EIP (step 1 in Fig. 5-7). In step 2, ESP is incremented so it
points to the previous value on the stack (step 2).

Figure 5–6 Executing a CALL instruction.

Figure 5–7 Executing the RET instruction.

5.2.3 Nested Procedure Calls
A nested procedure call occurs when a called procedure calls another procedure before the first
procedure returns. Suppose that main calls a procedure named Sub1. While Sub1 is executing,
it calls the Sub2 procedure. While Sub2 is executing, it calls the Sub3 procedure. The process is
shown in Fig. 5-8.

When the RET instruction at the end of Sub3 executes, it pops the value at stack[ESP] into
the instruction pointer. This causes execution to resume at the instruction following the call Sub3
instruction. The following diagram shows the stack just before the return from Sub3 is executed:

00000025

????

ESP

EIP

00000040

ESP

EIP

Step 1:

Step 2:

0000002500000025

ESP ????

????

(ret to main)

(ret to Sub1)

(ret to Sub2)
ESP

5.2 Defining and Using Procedures 149

Figure 5–8 Nested procedure calls.

After the return, ESP points to the next-highest stack entry. When the RET instruction at the
end of Sub2 is about to execute, the stack appears as follows:

Finally, when Sub1 returns, stack[ESP] is popped into the instruction pointer, and execution
resumes in main:

Clearly, the stack proves itself a useful device for remembering information, including nested
procedure calls. Stack structures, in general, are used in situations where programs must retrace
their steps in a specific order.

main proc

 .

 .

 call Sub1

 exit

main endp

Sub1 proc

 .

 .

 call Sub2

 ret
Sub1 endp

Sub2 proc

 .

 .

 call Sub3

 ret
Sub2 endp

Sub3 proc

 .

 .

 ret
Sub3 endp

(ret to main)

(ret to Sub1)
ESP

(ret to main)
ESP

150 Chapter 5 • Procedures

5.2.4 Passing Register Arguments to Procedures
If you write a procedure that performs some standard operation such as calculating the sum of an
integer array, it’s not a good idea to include references to specific variable names inside the pro-
cedure. If you did, the procedure could only be used with one array. A better approach is to pass
the offset of an array to the procedure and pass an integer specifying the number of array ele-
ments. We call these arguments (or input parameters). In assembly language, it is common to
pass arguments inside general-purpose registers.

In the preceding section we created a simple procedure named SumOf that added the integers
in the EAX, EBX, and ECX registers. In main, before calling SumOf, we assign values to EAX,
EBX, and ECX:

.data
theSum DWORD ?
.code
main PROC

mov eax,10000h ; argument
mov ebx,20000h ; argument
mov ecx,30000h ; argument
call Sumof ; EAX = (EAX + EBX + ECX)
mov theSum,eax ; save the sum

After the CALL statement, we have the option of copying the sum in EAX to a variable.

5.2.5 Example: Summing an Integer Array
A very common type of loop that you may have already coded in C++ or Java is one that calcu-
lates the sum of an integer array. This is very easy to implement in assembly language, and it can
be coded in such a way that it will run as fast as possible. For example, one can use registers
rather than variables inside a loop.

Let’s create a procedure named ArraySum that receives two parameters from a calling pro-
gram: a pointer to an array of 32-bit integers, and a count of the number of array values. It calcu-
lates and returns the sum of the array in EAX:

;---
; ArraySum
;
; Calculates the sum of an array of 32-bit integers.
; Receives: ESI = the array offset
; ECX = number of elements in the array
; Returns: EAX = sum of the array elements
;---
ArraySum PROC

push esi ; save ESI, ECX
push ecx
mov eax,0 ; set the sum to zero

L1: add eax,[esi] ; add each integer to sum
add esi,TYPE DWORD ; point to next integer

5.2 Defining and Using Procedures 151

loop L1 ; repeat for array size

pop ecx ; restore ECX, ESI
pop esi
ret ; sum is in EAX

ArraySum ENDP

Nothing in this procedure is specific to a certain array name or array size. It could be used in any
program that needs to sum an array of 32-bit integers. Whenever possible, you should also create
procedures that are flexible and adaptable.

Testing the ArraySum Procedure
The following program tests the ArraySum procedure by calling it and passing the offset and
length of an array of 32-bit integers. After calling ArraySum, it saves the procedure’s return
value in a variable named theSum.

; Testing the ArraySum procedure (TestArraySum.asm)

.386

.model flat, stdcall

.stack 4096
ExitProcess PROTO, dwExitCode:DWORD

.data
array DWORD 10000h,20000h,30000h,40000h,50000h
theSum DWORD ?

.code
main PROC

mov esi,OFFSET array ; ESI points to array
mov ecx,LENGTHOF array ; ECX = array count
call ArraySum ; calculate the sum
mov theSum,eax ; returned in EAX

INVOKE ExitProcess,0
main ENDP

;---
; ArraySum
; Calculates the sum of an array of 32-bit integers.
; Receives: ESI = the array offset
; ECX = number of elements in the array
; Returns: EAX = sum of the array elements
;---

ArraySum PROC
push esi ; save ESI, ECX
push ecx
mov eax,0 ; set the sum to zero

L1:
add eax,[esi] ; add each integer to sum
add esi,TYPE DWORD ; point to next integer
loop L1 ; repeat for array size

152 Chapter 5 • Procedures

pop ecx ; restore ECX, ESI
pop esi
ret ; sum is in EAX

ArraySum ENDP

END main

5.2.6 Saving and Restoring Registers
In the ArraySum example, ECX and ESI were pushed on the stack at the beginning of the pro-
cedure and popped at the end. This action is typical of most procedures that modify registers.
Always save and restore registers that are modified by a procedure so the calling program can be
sure that none of its own register values will be overwritten. The exception to this rule pertains to
registers used as return values, usually EAX. Do not push and pop them.

USES Operator
The USES operator, coupled with the PROC directive, lets you list the names of all registers
modified within a procedure. USES tells the assembler to do two things: First, generate PUSH
instructions that save the registers on the stack at the beginning of the procedure. Second,
generate POP instructions that restore the register values at the end of the procedure. The USES
operator immediately follows PROC, and is itself followed by a list of registers on the same line
separated by spaces or tabs (not commas).

The ArraySum procedure from Section 5.2.5 used PUSH and POP instructions to save and
restore ESI and ECX. The USES operator can more easily do the same:

ArraySum PROC USES esi ecx
mov eax,0 ; set the sum to zero

L1:
add eax,[esi] ; add each integer to sum
add esi,TYPE DWORD ; point to next integer
loop L1 ; repeat for array size

ret ; sum is in EAX
ArraySum ENDP

The corresponding code generated by the assembler shows the effect of USES:

ArraySum PROC
push esi
push ecx
mov eax,0 ; set the sum to zero

L1:
add eax,[esi] ; add each integer to sum
add esi,TYPE DWORD ; point to next integer
loop L1 ; repeat for array size

pop ecx
pop esi
ret

ArraySum ENDP

5.3 Linking to an External Library 153

Exception There is an important exception to our standing rule about saving registers that
applies when a procedure returns a value in a register (usually EAX). In this case, the return reg-
ister should not be pushed and popped. For example, in the SumOf procedure in the following
example, it pushes and pops EAX, causing the procedure’s return value to be lost:

SumOf PROC ; sum of three integers
push eax ; save EAX
add eax,ebx ; calculate the sum
add eax,ecx ; of EAX, EBX, ECX
pop eax ; lost the sum!
ret

SumOf ENDP

5.2.7 Section Review
1. (True/False): The PROC directive begins a procedure and the ENDP directive ends a

procedure.

2. (True/False): It is possible to define a procedure inside an existing procedure.

3. What would happen if the RET instruction was omitted from a procedure?

4. How are the words Receives and Returns used in the suggested procedure documentation?

5. (True/False): The CALL instruction pushes the offset of the CALL instruction on the stack.

6. (True/False): The CALL instruction pushes the offset of the instruction following the
CALL on the stack.

5.3 Linking to an External Library
If you spend the time, you can write detailed code for input–output in assembly language. It’s a
lot like building your own automobile from scratch so that you can drive somewhere. The work
is both interesting and time consuming. In Chapter 11 you will get a chance to see how input–
output is handled in MS-Windows protected mode. It is great fun, and a new world opens up
when you see the available tools. For now, however, input–output should be easy while you are
learning assembly language basics. Section 5.3 shows how to call procedures from the book’s
link libraries, named Irvine32.lib and Irvine64.obj. The complete library source code is available
at the author’s web site (asmirvine.com). It should be installed on your computer in the
Examples\Lib32 subfolder of the book’s install file (usually named C:\Irvine).

The Irvine32 library can only be used by programs running in 32-bit mode. It contains pro-
cedures that link to the MS-Windows API when they generate input–output. The Irvine64
library is a more limited library for 64-bit applications that is limited to essential display and
string operations.

Debugging Tip: When using the Microsoft Visual Studio debugger, you can view the hidden machine
instructions generated by MASM’s advanced operators and directives. Right-click in the Debugging
window and select Go to Disassembly. This window displays your program’s source code along with
hidden machine instructions generated by the assembler.

154 Chapter 5 • Procedures

5.3.1 Background Information
A link library is a file containing procedures (subroutines) that have been assembled into
machine code. A link library begins as one or more source files, which are assembled into object
files. The object files are inserted into a specially formatted file recognized by the linker utility.
Suppose a program displays a string in the console window by calling a procedure named
WriteString. The program source must contain a PROTO directive identifying the WriteString
procedure:

WriteString proto

Next, a CALL instruction executes WriteString:

call WriteString

When the program is assembled, the assembler leaves the target address of the CALL instruc-
tion blank, knowing that it will be filled in by the linker. The linker looks for WriteString in the
link library and copies the appropriate machine instructions from the library into the program’s
executable file. In addition, it inserts WriteString’s address into the CALL instruction. If a pro-
cedure you’re calling is not in the link library, the linker issues an error message and does not
generate an executable file.

Linker Command Options The linker utility combines a program’s object file with one or
more object files and link libraries. The following command, for example, links hello.obj to the
irvine32.lib and kernel32.lib libraries:

link hello.obj irvine32.lib kernel32.lib

Linking 32-Bit Programs The kernel32.lib file, part of the Microsoft Windows Platform
Software Development Kit, contains linking information for system functions located in a file
named kernel32.dll. The latter is a fundamental part of MS-Windows, and is called a dynamic
link library. It contains executable functions that perform character-based input–output.
Figure 5-9 shows how kernel32.lib is a bridge to kernel32.dll.

Figure 5–9 Linking 32-bit programs.

In Chapters 1 through 10, our programs link either Irvine32.lib or Irvine64.obj. Chapter 11
shows how to link programs directly to kernel32.lib.

Your program

kernel32.lib

kernel32.dll

Irvine32.lib
links

to
links to

can link to

executes

5.4 The Irvine32 Library 155

5.3.2 Section Review
1. (True/False): A link library consists of assembly language source code.

2. Use the PROTO directive to declare a procedure named MyProc in an external link library.

3. Write a CALL statement that calls a procedure named MyProc in an external link library.

4. What is the name of the 32-bit link library supplied with this book?

5. What type of file is kernel32.dll?

5.4 The Irvine32 Library

5.4.1 Motivation for Creating the Library
There is no Microsoft-sanctioned standard library for assembly language programming. When
programmers first started writing assembly language for x86 processors in the early 1980s, MS-
DOS was the commonly used operating system. These 16-bit programs were able to call MS-
DOS functions (known as INT 21h services) to do simple input/output. Even at that time, if you
wanted to display an integer on the console, you had to write a fairly complicated procedure that
converted from the internal binary representation of integers to a sequence of ASCII characters
that would display the integer on the screen. We called it WriteInt, and this is the logic,
abstracted into pseudocode:

Initialization:

let n equal the binary value
let buffer be an array of char[size]

Algorithm:

i = size -1 ; last position of buffer
repeat

r = n mod 10 ; remainder
n = n / 10 ; integer division
digit = r OR 30h ; conver r to ASCII digit
buffer[i--] = digit ; store in buffer

until n = 0

if n is negative
buffer[i] = "-" ; insert a negative sign

while i > 0
print buffer[i]
i++

Notice that the digits are generated in reverse order and inserted into a buffer, moving from the
back to the front. Then the digits are written to the console in forward order. While this code is
easy enough to implement in C/C++, it requires some advanced skills in assembly language.

Professional programmers often prefer to build their own libraries, and doing so is an
excellent educational experience. In 32-bit mode running under Windows, an input–output
library must make calls directly into the operating system. The learning curve is rather
steep, and it presents some challenges for beginning programmers. Therefore, the Irvine32

156 Chapter 5 • Procedures

library is designed to provide a simple interface for input–output for beginners. As you con-
tinue through the chapters in this book, you will acquire the knowledge and skills to create
your own library. You are free to modify and reuse the library, as long as you give credit to
its original author. Another alternative, which we will discuss in Chapter 13, is to call Stan-
dard C library functions from your assembly language programs. Again, that requires some
additional background.

Table 5-1 contains a complete list of procedures in the Irvine32 library.

Table 5-1 Procedures in the Irvine32 Library.

Procedure Description

CloseFile Closes a disk file that was previously opened.

Clrscr Clears the console window and locates the cursor at the upper left corner.

CreateOutputFile Creates a new disk file for writing in output mode.

Crlf Writes an end-of-line sequence to the console window.

Delay Pauses the program execution for a specified n-millisecond interval.

DumpMem Writes a block of memory to the console window in hexadecimal.

DumpRegs Displays the EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP, EFLAGS, and EIP registers
in hexadecimal. Also displays the most common CPU status flags.

GetCommandTail Copies the program’s command-line arguments (called the command tail) into an array
of bytes.

GetDateTime Gets the current date and time from the system.

GetMaxXY Gets the number of columns and rows in the console window’s buffer.

GetMseconds Returns the number of milliseconds elapsed since midnight.

GetTextColor Returns the active foreground and background text colors in the console window.

Gotoxy Locates the cursor at a specific row and column in the console window.

IsDigit Sets the Zero flag if the AL register contains the ASCII code for a decimal digit (0–9).

MsgBox Displays a popup message box.

MsgBoxAsk Display a yes/no question in a popup message box.

OpenInputFile Opens an existing disk file for input.

ParseDecimal32 Converts an unsigned decimal integer string to 32-bit binary.

ParseInteger32 Converts a signed decimal integer string to 32-bit binary.

Random32 Generates a 32-bit pseudorandom integer in the range 0 to FFFFFFFFh.

Randomize Seeds the random number generator with a unique value.

RandomRange Generates a pseudorandom integer within a specified range.

ReadChar Waits for a single character to be typed at the keyboard and returns the character.

ReadDec Reads an unsigned 32-bit decimal integer from the keyboard, terminated by the Enter key.

ReadFromFile Reads an input disk file into a buffer.

ReadHex Reads a 32-bit hexadecimal integer from the keyboard, terminated by the Enter key.

5.4 The Irvine32 Library 157

5.4.2 Overview

Console Window The console window (or command window) is a text-only window created
by MS-Windows when a command prompt is displayed.

To display a console window in Microsoft Windows, click the Start button on the desktop, type
cmd into the Start Search field, and press Enter. Once a console window is open, you can resize the
console window buffer by right-clicking on the system menu in the window’s upper-left corner,
selecting Properties from the popup menu, and then modifying the values, as shown in Fig. 5-10.

You can also select various font sizes and colors. The console window defaults to 25 rows by
80 columns. You can use the mode command to change the number of columns and lines. The
following, typed at the command prompt, sets the console window to 40 columns by 30 lines:

mode con cols=40 lines=30

ReadInt Reads a 32-bit signed decimal integer from the keyboard, terminated by the Enter key.

ReadKey Reads a character from the keyboard’s input buffer without waiting for input.

ReadString Reads a string from the keyboard, terminated by the Enter key.

SetTextColor Sets the foreground and background colors of all subsequent text output to the console.

Str_compare Compares two strings.

Str_copy Copies a source string to a destination string.

Str_length Returns the length of a string in EAX.

Str_trim Removes unwanted characters from a string.

Str_ucase Converts a string to uppercase letters.

WaitMsg Displays a message and waits for a key to be pressed.

WriteBin Writes an unsigned 32-bit integer to the console window in ASCII binary format.

WriteBinB Writes a binary integer to the console window in byte, word, or doubleword format.

WriteChar Writes a single character to the console window.

WriteDec Writes an unsigned 32-bit integer to the console window in decimal format.

WriteHex Writes a 32-bit integer to the console window in hexadecimal format.

WriteHexB Writes a byte, word, or doubleword integer to the console window in hexadecimal
format.

WriteInt Writes a signed 32-bit integer to the console window in decimal format.

WriteStackFrame Writes the current procedure’s stack frame to the console.

WriteStackFrameName Writes the current procedure’s name and stack frame to the console.

WriteString Writes a null-terminated string to the console window.

WriteToFile Writes a buffer to an output file.

WriteWindowsMsg Displays a string containing the most recent error generated by MS-Windows.

Procedure Description

Table 5-1 (Continued)

158 Chapter 5 • Procedures

Figure 5–10 Modifying the console window properties.

A file handle is a 32-bit integer used by the Windows operating system to identify a file that is
currently open. When your program calls a Windows service to open or create a file, the operat-
ing system creates a new file handle and makes it available to your program. Each time you call
an OS service method to read from or write to the file, you must pass the same file handle as a
parameter to the service method.

Note: If your program calls procedures in the Irvine32 library, you must always push 32-bit
values onto the runtime stack; if you do not, the Win32 Console functions called by the library
will not work correctly.

5.4.3 Individual Procedure Descriptions
In this section, we describe how each of the procedures in the Irvine32 library is used. We will
omit a few of the more advanced procedures, which will be explained in later chapters.

CloseFile The CloseFile procedure closes a file that was previously created or opened (see
CreateOutputFile and OpenInputFile). The file is identified by a 32-bit integer handle, which is
passed in EAX. If the file is closed successfully, the value returned in EAX will be nonzero.
Sample call:

mov eax,fileHandle
call CloseFile

5.4 The Irvine32 Library 159

Clrscr The Clrscr procedure clears the console window. This procedure is typically called at
the beginning and end of a program. If you call it at other times, you may need to pause the pro-
gram by first calling WaitMsg. Doing this allows the user to view information already on the
screen before it is erased. Sample call:

call WaitMsg ; "Press any key..."
call Clrscr

CreateOutputFile The CreateOutputFile procedure creates a new disk file and opens it for writ-
ing. When you call the procedure, place the offset of a filename in EDX. When the procedure
returns, EAX will contain a valid file handle (32-bit integer) if the file was created successfully.
Otherwise, EAX equals INVALID_HANDLE_VALUE (a predefined constant). Sample call:

.data
filename BYTE "newfile.txt",0
.code
mov edx,OFFSET filename
call CreateOutputFile

The following pseudocode describes the possible outcomes after calling CreateOutputFile:

if EAX = INVALID_HANDLE_VALUE
the file was not created successfully

else
EAX = handle for the open file

endif

Crlf The Crlf procedure advances the cursor to the beginning of the next line in the console
window. It writes a string containing the ASCII character codes 0Dh and 0Ah. Sample call:

call Crlf

Delay The Delay procedure pauses the program for a specified number of milliseconds.
Before calling Delay, set EAX to the desired interval. Sample call:

mov eax,1000 ; 1 second
call Delay

DumpMem The DumpMem procedure writes a range of memory to the console window in hexa-
decimal. Pass it the starting address in ESI, the number of units in ECX, and the unit size in EBX
(1 � byte, 2 � word, 4 � doubleword). The following sample call displays an array of 11 doublewords
in hexadecimal:

.data
array DWORD 1,2,3,4,5,6,7,8,9,0Ah,0Bh
.code
main PROC

mov esi,OFFSET array ; starting OFFSET
mov ecx,LENGTHOF array ; number of units
mov ebx,TYPE array ; doubleword format
call DumpMem

160 Chapter 5 • Procedures

The following output is produced:

00000001 00000002 00000003 00000004 00000005 00000006
00000007 00000008 00000009 0000000A 0000000B

DumpRegs The DumpRegs procedure displays the EAX, EBX, ECX, EDX, ESI, EDI, EBP,
ESP, EIP, and EFL (EFLAGS) registers in hexadecimal. It also displays the values of the Carry,
Sign, Zero, Overflow, Auxiliary Carry, and Parity flags. Sample call:

call DumpRegs

Sample output:

EAX=00000613 EBX=00000000 ECX=000000FF EDX=00000000
ESI=00000000 EDI=00000100 EBP=0000091E ESP=000000F6
EIP=00401026 EFL=00000286 CF=0 SF=1 ZF=0 OF=0 AF=0 PF=1

The displayed value of EIP is the offset of the instruction following the call to DumpRegs.
DumpRegs can be useful when debugging programs because it displays a snapshot of the CPU.
It has no input parameters and no return value.

GetCommandTail The GetCommandTail procedure copies the program’s command line into
a null-terminated string. If the command line was found to be empty, the Carry flag is set; other-
wise, the Carry flag is cleared. This procedure is useful because it permits the user of a program
to pass parameters on the command line. Suppose a program named Encrypt.exe reads an input
file named file1.txt and produces an output file named file2.txt. The user can pass both filenames
on the command line when running the program:

Encrypt file1.txt file2.txt

When it starts up, the Encrypt program can call GetCommandTail and retrieve the two file-
names. When calling GetCommandTail, EDX must contain the offset of an array of at least 129
bytes. Sample call:

.data
cmdTail BYTE 129 DUP(0) ; empty buffer
.code
mov edx,OFFSET cmdTail
call GetCommandTail ; fills the buffer

There is a way to pass command-line arguments when running an application in Visual Studio.
From the Project menu, select <projectname> Properties. In the Property Pages window,
expand the entry under Configuration Properties, and select Debugging. Then enter your com-
mand arguments into the edit line on the right panel named Command Arguments.

GetMaxXY The GetMaxXY procedure gets the size of the console window’s buffer. If the con-
sole window buffer is larger than the visible window size, scroll bars appear automatically.
GetMaxXY has no input parameters. When it returns, the DX register contains the number of
buffer columns and AX contains the number of buffer rows. The possible range of each value can
be no greater than 255, which may be smaller than the actual window buffer size. Sample call:

5.4 The Irvine32 Library 161

.data
rows BYTE ?
cols BYTE ?
.code
call GetMaxXY
mov rows,al
mov cols,dl

GetMseconds The GetMseconds procedure gets the number of milliseconds elapsed since
midnight on the host computer, and returns the value in the EAX register. The procedure is a
great tool for measuring the time between events. No input parameters are required. The follow-
ing example calls GetMseconds, storing its return value. After the loop executes, the code call
GetMseconds a second time and subtract the two time values. The difference is the approximate
execution time of the loop:

.data
startTime DWORD ?
.code
call GetMseconds
mov startTime,eax
L1:
; (loop body)
loop L1

call GetMseconds
sub eax,startTime ; EAX = loop time, in milliseconds

GetTextColor The GetTextColor procedure gets the current foreground and background
colors of the console window. It has no input parameters. It returns the background color in the
upper four bits of AL and the foreground color in the lower four bits. Sample call:

.data
color byte ?
.code
call GetTextColor
mov color,AL

Gotoxy The Gotoxy procedure locates the cursor at a given row and column in the console win-
dow. By default, the console window’s X-coordinate range is 0 to 79 and the Y-coordinate range is
0 to 24. When you call Gotoxy, pass the Y-coordinate (row) in DH and the X-coordinate (column)
in DL. Sample call:

mov dh,10 ; row 10
mov dl,20 ; column 20
call Gotoxy ; locate cursor

The user may have resized the console window, so you can call GetMaxXY to find out the cur-
rent number of rows and columns.

162 Chapter 5 • Procedures

IsDigit The IsDigit procedure determines whether the value in AL is the ASCII code for
a valid decimal digit. When calling it, pass an ASCII character in AL. The procedure sets
the Zero flag if AL contains a valid decimal digit; otherwise, it clears Zero flag. Sample
call:

mov AL,somechar
call IsDigit

MsgBox The MsgBox procedure displays a graphical popup message box with an optional
caption. (This works when the program is running in a console window.) Pass it the offset of a
string in EDX, which will appear inside the box. Optionally, pass the offset of a string for the
box’s title in EBX. To leave the title blank, set EBX to zero. Sample call:

.data
caption BYTE "Dialog Title", 0
HelloMsg BYTE "This is a pop-up message box.", 0dh,0ah

 BYTE "Click OK to continue...", 0
.code
mov ebx,OFFSET caption
mov edx,OFFSET HelloMsg
call MsgBox

Sample output:

MsgBoxAsk The MsgBoxAsk procedure displays a graphical popup message box with Yes
and No buttons. (This works when the program is running in a console window.) Pass it the
offset of a question string in EDX, which will appear inside the box. Optionally, pass the off-
set of a string for the box’s title in EBX. To leave the title blank, set EBX to zero. MsgBoxAsk
returns an integer in EAX that tells you which button was selected by the user. The value will be
one of two predefined Windows constants: IDYES (equal to 6) or IDNO (equal to 7). Sample
call:

.data
caption BYTE "Survey Completed",0
question BYTE "Thank you for completing the survey."
 BYTE 0dh,0ah
 BYTE "Would you like to receive the results?",0
.code
mov ebx,OFFSET caption
mov edx,OFFSET question
call MsgBoxAsk
;(check return value in EAX)

5.4 The Irvine32 Library 163

Sample output:

OpenInputFile The OpenInputFile procedure opens an existing file for input. Pass it the off-
set of a filename in EDX. When it returns, if the file was opened successfully, EAX will contain
a valid file handle. Otherwise, EAX will equal INVALID_HANDLE_VALUE (a predefined
constant).

Sample call:

.data
filename BYTE "myfile.txt",0
.code
mov edx,OFFSET filename
call OpenInputFile

The following pseudocode describes the possible outcomes after calling OpenInputFile:

if EAX = INVALID_HANDLE_VALUE
the file was not opened successfully

else
EAX = handle for the open file

endif

ParseDecimal32 The ParseDecimal32 procedure converts an unsigned decimal integer string
to 32-bit binary. All valid digits occurring before a nonnumeric character are converted. Leading
spaces are ignored. Pass it the offset of a string in EDX and the string’s length in ECX. The
binary value is returned in EAX. Sample call:

.data
buffer BYTE "8193"
bufSize = ($ - buffer)
.code
mov edx,OFFSET buffer
mov ecx,bufSize
call ParseDecimal32 ; returns EAX

• If the integer is blank, EAX = 0 and CF = 1
• If the integer contains only spaces, EAX = 0 and CF = 1
• If the integer is larger than 232�1, EAX = 0 and CF = 1
• Otherwise, EAX contains the converted integer and CF = 0

See the description of the ReadDec procedure for details about how the Carry flag is affected.

164 Chapter 5 • Procedures

ParseInteger32 The ParseInteger32 procedure converts a signed decimal integer string to
32-bit binary. All valid digits from the beginning of the string to the first nonnumeric character
are converted. Leading spaces are ignored. Pass it the offset of a string in EDX and the string’s
length in ECX. The binary value is returned in EAX. Sample call:

.data
buffer byte "-8193"
bufSize = ($ - buffer)
.code
mov edx,OFFSET buffer
mov ecx,bufSize
call ParseInteger32 ; returns EAX

The string may contain an optional leading plus or minus sign, followed only by decimal dig-
its. The Overflow flag is set and an error message is displayed on the console if the value cannot
be represented as a 32-bit signed integer (range: �2,147,483,648 to �2,147,483,647).

Random32 The Random32 procedure generates and returns a 32-bit random integer in EAX.
When called repeatedly, Random32 generates a simulated random sequence. The numbers are
created using a simple function having an input called a seed. The function uses the seed in a
formula that generates the random value. Subsequent random values are generated using each
previously generated random value as their seeds. The following code snippet shows a sample
call to Random32:

.data
randVal DWORD ?
.code
call Random32
mov randVal,eax

Randomize The Randomize procedure initializes the starting seed value of the Random32 and
RandomRange procedures. The seed equals the time of day, accurate to 1/100 of a second. Each
time you run a program that calls Random32 and RandomRange, the generated sequence of
random numbers will be unique. You need only to call Randomize once at the beginning of a pro-
gram. The following example produces 10 random integers:

call Randomize
mov ecx,10

L1: call Random32

 ; use or display random value in EAX here...

loop L1

RandomRange The RandomRange procedure produces a random integer within the range of
0 to n � 1, where n is an input parameter passed in the EAX register. The random integer is
returned in EAX. The following example generates a single random integer between 0 and 4999
and places it in a variable named randVal.

.data
randVal DWORD ?

5.4 The Irvine32 Library 165

.code
mov eax,5000
call RandomRange
mov randVal,eax

ReadChar The ReadChar procedure reads a single character from the keyboard and returns
the character in the AL register. The character is not echoed in the console window. Sample
call:

.data
char BYTE ?
.code
call ReadChar
mov char,al

If the user presses an extended key such as a function key, arrow key, Ins, or Del, the proce-
dure sets AL to zero, and AH contains a keyboard scan code. A list of scan codes is shown on the
page facing the book’s inside front cover. The upper half of EAX is not preserved. The following
pseudocode describes the possible outcomes after calling ReadChar:

if an extended key was pressed
AL = 0
AH = keyboard scan code

else
AL = ASCII key value

endif

ReadDec The ReadDec procedure reads a 32-bit unsigned decimal integer from the keyboard
and returns the value in EAX. Leading spaces are ignored. The return value is calculated from
all valid digits found until a nondigit character is encountered. For example, if the user enters
123ABC, the value returned in EAX is 123. Following is a sample call:

.data
intVal DWORD ?
.code
call ReadDec
mov intVal,eax

ReadDec affects the Carry flag in the following ways:

• If the integer is blank, EAX � 0 and CF � 1
• If the integer contains only spaces, EAX � 0 and CF � 1
• If the integer is larger than 232�1, EAX � 0 and CF � 1
• Otherwise, EAX holds the converted integer and CF � 0

ReadFromFile The ReadFromFile procedure reads an input disk file into a memory
buffer. When you call ReadFromFile, pass it an open file handle in EAX, the offset of a
buffer in EDX, and the maximum number of bytes to read in ECX. When ReadFromFile
returns, check the value of the Carry flag: If CF is clear, EAX contains a count of the
number of bytes read from the file. But if CF is set, EAX contains a numeric system error
code. You can call the WriteWindowsMsg procedure to get a text representation of the error.

166 Chapter 5 • Procedures

In the following example, as many as 5000 bytes are copied from the file into the buffer
variable:

.data
BUFFER_SIZE = 5000
buffer BYTE BUFFER_SIZE DUP(?)
bytesRead DWORD ?

.code
mov edx,OFFSET buffer ; points to buffer
mov ecx,BUFFER_SIZE ; max bytes to read
call ReadFromFile ; read the file

If the Carry flag were clear at this point, you could execute the following instruction:

mov bytesRead,eax ; count of bytes actually read

But if the Carry flag were set, you would call WriteWindowsMsg procedure, which displays
a string that contains the error code and description of the most recent error generated by the
application:

call WriteWindowsMsg

ReadHex The ReadHex procedure reads a 32-bit hexadecimal integer from the keyboard and
returns the corresponding binary value in EAX. No error checking is performed for invalid charac-
ters. You can use both uppercase and lowercase letters for the digits A through F. A maximum of eight
digits may be entered (additional characters are ignored). Leading spaces are ignored. Sample call:

.data
hexVal DWORD ?
.code
call ReadHex
mov hexVal,eax

ReadInt The ReadInt procedure reads a 32-bit signed integer from the keyboard and returns the
value in EAX. The user can type an optional leading plus or minus sign, and the rest of the number
may only consist of digits. ReadInt sets the Overflow flag and display an error message if the value
entered cannot be represented as a 32-bit signed integer (range: �2,147,483,648 to �2,147,483,647).
The return value is calculated from all valid digits found until a nondigit character is encountered.
For example, if the user enters �123ABC, the value returned is �123. Sample call:

.data
intVal SDWORD ?
.code
call ReadInt
mov intVal,eax

ReadKey The ReadKey procedure performs a no-wait keyboard check. In other words, it
inspects the keyboard input buffer to see if a key has been pressed by the user. If no keyboard
data is found, the Zero flag is set. If a keypress is found by ReadKey, the Zero flag is cleared and
AL is assigned either zero or an ASCII code. If AL contains zero, the user may have pressed a
special key (function key, arrow key, etc.) The AH register contains a virtual scan code, DX

5.4 The Irvine32 Library 167

contains a virtual key code, and EBX contains the keyboard flag bits. The following pseudocode
describes the various outcomes when calling ReadKey:

if no_keyboard_data then
ZF = 1

else
ZF = 0
if AL = 0 then
extended key was pressed, and AH = scan code, DX = virtual

key code, and EBX = keyboard flag bits
else
AL = the key's ASCII code

endif
endif

The upper halves of EAX and EDX are overwritten when ReadKey is called.

ReadString The ReadString procedure reads a string from the keyboard, stopping when the
user presses the Enter key. Pass the offset of a buffer in EDX and set ECX to the maximum num-
ber of characters the user can enter, plus 1 (to save space for the terminating null byte). The pro-
cedure returns the count of the number of characters typed by the user in EAX. Sample call:

.data
buffer BYTE 21 DUP(0) ; input buffer
byteCount DWORD ? ; holds counter
.code
mov edx,OFFSET buffer ; point to the buffer
mov ecx,SIZEOF buffer ; specify max characters
call ReadString ; input the string
mov byteCount,eax ; number of characters

ReadString automatically inserts a null terminator in memory at the end of the string. The fol-
lowing is a hexadecimal and ASCII dump of the first 8 bytes of buffer after the user has entered
the string “ABCDEFG”:

The variable byteCount equals 7.

SetTextColor The SetTextColor procedure (Irvine32 library only) sets the foreground and
background colors for text output. When calling SetTextColor, assign a color attribute to EAX.
The following predefined color constants can be used for both foreground and background:

41 42 43 44 45 46 47 00 ABCDEFG

black � 0 red � 4 gray � 8 lightRed � 12

blue � 1 magenta � 5 lightBlue � 9 lightMagenta � 13

green � 2 brown � 6 lightGreen � 10 yellow � 14

cyan � 3 lightGray � 7 lightCyan � 11 white � 15

168 Chapter 5 • Procedures

Color constants are defined in the Irvine32.inc file. To get a complete color byte value, multi-
ply the background color by 16 and add it to the foreground color. The following constant, for
example, indicates yellow characters on a blue background:

yellow � (blue * 16)

The following statements set the color to white on a blue background:

mov eax,white � (blue * 16) ; white on blue
call SetTextColor

An alternative way to express color constants is to use the SHL operator. You shift the back-
ground color leftward by 4 bits before adding it to the foreground color.

yellow + (blue SHL 4)

The bit shifting is performed at assembly time, so it can only have constant operands. In
Chapter 7, you will learn how to shift integers at runtime. You can find a detailed explanation of
video attributes in Section 16.3.2.

Str_length The Str_length procedure returns the length of a null-terminated string. Pass the
string’s offset in EDX. The procedure returns the string’s length in EAX. Sample call:

.data
buffer BYTE "abcde",0
bufLength DWORD ?
.code
mov edx,OFFSET buffer ; point to string
call Str_length ; EAX = 5
mov bufLength,eax ; save length

WaitMsg The WaitMsg procedure displays the message “Press any key to continue. . .” and
waits for the user to press a key. This procedure is useful when you want to pause the screen dis-
play before data scrolls off and disappears. It has no input parameters. Sample call:

call WaitMsg

WriteBin The WriteBin procedure writes an integer to the console window in ASCII binary
format. Pass the integer in EAX. The binary bits are displayed in groups of four for easy reading.
Sample call:

mov eax,12346AF9h
call WriteBin

The following output would be displayed by our sample code:

0001 0010 0011 0100 0110 1010 1111 1001

WriteBinB The WriteBinB procedure writes a 32-bit integer to the console window in ASCII
binary format. Pass the value in the EAX register and let EBX indicate the display size in bytes
(1, 2, or 4). The bits are displayed in groups of four for easy reading. Sample call:

mov eax,00001234h
mov ebx,TYPE WORD ; 2 bytes
call WriteBinB ; displays 0001 0010 0011 0100

5.4 The Irvine32 Library 169

WriteChar The WriteChar procedure writes a single character to the console window. Pass the
character (or its ASCII code) in AL. Sample call:

mov al,'A'
call WriteChar ; displays: "A"

WriteDec The WriteDec procedure writes a 32-bit unsigned integer to the console window in
decimal format with no leading zeros. Pass the integer in EAX. Sample call:

mov eax,295
call WriteDec ; displays: "295"

WriteHex The WriteHex procedure writes a 32-bit unsigned integer to the console window in
8-digit hexadecimal format. Leading zeros are inserted if necessary. Pass the integer in EAX.
Sample call:

mov eax,7FFFh
call WriteHex ; displays: "00007FFF"

WriteHexB The WriteHexB procedure writes a 32-bit unsigned integer to the console window
in hexadecimal format. Leading zeros are inserted if necessary. Pass the integer in EAX and let
EBX indicate the display format in bytes (1, 2, or 4). Sample call:

mov eax,7FFFh
mov ebx,TYPE WORD ; 2 bytes
call WriteHexB ; displays: "7FFF"

WriteInt The WriteInt procedure writes a 32-bit signed integer to the console window in
decimal format with a leading sign and no leading zeros. Pass the integer in EAX. Sample
call:

mov eax,216543
call WriteInt ; displays: "+216543"

WriteString The WriteString procedure writes a null-terminated string to the console window.
Pass the string’s offset in EDX. Sample call:

.data
prompt BYTE "Enter your name: ",0
.code
mov edx,OFFSET prompt
call WriteString

WriteToFile The WriteToFile procedure writes the contents of a buffer to an output file. Pass it a
valid file handle in EAX, the offset of the buffer in EDX, and the number of bytes to write in ECX.
When the procedure returns, if EAX is greater than zero, it contains a count of the number of bytes
written; otherwise, an error occurred. The following code calls WriteToFile:

BUFFER_SIZE = 5000
.data
fileHandle DWORD ?
buffer BYTE BUFFER_SIZE DUP(?)

170 Chapter 5 • Procedures

.code
mov eax,fileHandle
mov edx,OFFSET buffer
mov ecx,BUFFER_SIZE
call WriteToFile

The following pseudocode describes how to handle the value returned in EAX after calling
WriteToFile:

if EAX = 0 then
error occurred when writing to file
call WriteWindowsMessage to see the error

else
EAX = number of bytes written to the file

endif

WriteWindowsMsg The WriteWindowsMsg procedure writes a string containing the most
recent error generated by your application to the Console window when executing a call to a sys-
tem function. Sample call:

call WriteWindowsMsg

The following is an example of a message string:

Error 2: The system cannot find the file specified.

5.4.4 Library Test Programs

Tutorial: Library Test #1
In this hands-on tutorial, you will write a program that demonstrates integer input–output with
screen colors.

Step 1: Begin the program with a standard heading:

; Library Test #1: Integer I/O (InputLoop.asm)

; Tests the Clrscr, Crlf, DumpMem, ReadInt, SetTextColor,
; WaitMsg, WriteBin, WriteHex, and WriteString procedures.
INCLUDE Irvine32.inc

Step 2: Declare a COUNT constant that will determine the number of times the program’s loop
repeats later on. Then two constants, BlueTextOnGray and DefaultColor, are defined here so
they can be used later on when we change the console window colors. The color byte stores the
background color in the upper 4 bits, and the foreground (text) color in the lower 4 bits. We have
not yet discussed bit shifting instructions, but you can multiply the background color by 16 to
shift it into the high 4 bits of the color attribute byte:

.data
COUNT = 4
BlueTextOnGray = blue + (lightGray * 16)
DefaultColor = lightGray + (black * 16)

5.4 The Irvine32 Library 171

Step 3: Declare an array of signed doubleword integers, using hexadecimal constants. Also, add
a string that will be used as prompt when the program asks the user to input an integer:

arrayD SDWORD 12345678h,1A4B2000h,3434h,7AB9h
prompt BYTE "Enter a 32-bit signed integer: ",0

Step 4: In the code area, declare the main procedure and write code that initializes ECX to
blue text on a light gray background. The SetTextColor method changes the foreground and
background color attributes of all text written to the window from this point onward in the pro-
gram’s execution:

.code
main PROC

mov eax,BlueTextOnGray
call SetTextColor

In order to set the background of the console window to the new color, you must use the Clrscr
procedure to clear the screen:

call Clrscr ; clear the screen

Step 5: Assign to ESI the offset of arrayD, which marks the beginning of the range we wish to
display:

mov esi,OFFSET arrayD

Step 6: EBX is assigned an integer value that specifies the size of each array element. Since we
are displaying an array of doublewords, EBX equals 4. This is the value returned by the expres-
sion TYPE arrayD:

mov ebx,TYPE arrayD ; doubleword = 4 bytes

Step 7: ECX must be set to the number of units that will be displayed, using the LENGTHOF
operator. Then, when DumpMem is called, it has all the information it needs:

mov ecx,LENGTHOF arrayD ; number of units in arrayD
call DumpMem ; display memory

The following figure shows the type of output that would be generated by DumpMem:

Next, the program will display a range of doubleword values in memory, identified by the variable
named arrayD. The DumpMem procedure requires parameters to be passed in the ESI, EBX, and
ECX registers.

Dump of offset 00405000

12345678 1A4B2000 00003434 00007AB9

Next, the user will be asked to input a sequence of four signed integers. After each integer is entered,
it is redisplayed in signed decimal, hexadecimal, and binary.

172 Chapter 5 • Procedures

Step 8: Output a blank line by calling the Crlf procedure. Then, initialize ECX to the constant
value COUNT so ECX can be the counter for the loop that follows:

call Crlf
mov ecx,COUNT

Step 9: We need to display a string that asks the user to enter an integer. Assign the offset of the
string to EDX, and call the WriteString procedure. Then, call the ReadInt procedure to receive
input from the user. The value the user enters will be automatically stored in EAX:

L1: mov edx,OFFSET prompt
call WriteString
call ReadInt ; input integer into EAX
call Crlf ; display a newline

Step 10: Display the integer stored in EAX in signed decimal format by calling the WriteInt pro-
cedure. Then call Crlf to move the cursor to the next output line:

call WriteInt ; display in signed decimal
call Crlf

Step 11: Display the same integer (still in EAX) in hexadecimal and binary formats, by calling
the WriteHex and WriteBin procedures:

call WriteHex ; display in hexadecimal
call Crlf
call WriteBin ; display in binary
call Crlf
call Crlf

Step 12: You will insert a Loop instruction that allows the loop to repeat at Label L1. This
instruction first decrements ECX, and then jumps to label L1 only if ECX is not equal to zero:

Loop L1 ; repeat the loop

Step 13: After the loop ends, we want to display a “Press any key…” message and then pause the
output and wait for a key to be pressed by the user. To do this, we call the WaitMsg procedure:

call WaitMsg ; "Press any key..."

Step 14: Just before the program ends, the console window attributes are returned to the default
colors (light gray characters on a black background).

mov eax, DefaultColor
call SetTextColor
call Clrscr

Here are the closing lines of the program:

exit
main ENDP
END main

The remainder of the program’s output is shown in the following figure, using four sample inte-
gers entered by the user:

5.4 The Irvine32 Library 173

A complete listing of the program appears below, with a few added comment lines:

; Library Test #1: Integer I/O (InputLoop.asm)

; Tests the Clrscr, Crlf, DumpMem, ReadInt, SetTextColor,
; WaitMsg, WriteBin, WriteHex, and WriteString procedures.

include Irvine32.inc

.data
COUNT = 4
BlueTextOnGray = blue + (lightGray * 16)
DefaultColor = lightGray + (black * 16)
arrayD SDWORD 12345678h,1A4B2000h,3434h,7AB9h
prompt BYTE "Enter a 32-bit signed integer: ",0

.code
main PROC

; Select blue text on a light gray background

mov eax,BlueTextOnGray
call SetTextColor
call Clrscr ; clear the screen

; Display an array using DumpMem.

mov esi,OFFSET arrayD ; starting OFFSET
mov ebx,TYPE arrayD ; doubleword = 4 bytes
mov ecx,LENGTHOF arrayD ; number of units in arrayD
call DumpMem ; display memory

Enter a 32-bit signed integer: -42

-42

FFFFFFD6

1111 1111 1111 1111 1111 1111 1101 0110

Enter a 32-bit signed integer: 36

+36

00000024

0000 0000 0000 0000 0000 0000 0010 0100

Enter a 32-bit signed integer: 244324

+244324

0003BA64

0000 0000 0000 0011 1011 1010 0110 0100

Enter a 32-bit signed integer: -7979779

-7979779

FF863CFD

1111 1111 1000 0110 0011 1100 1111 1101

174 Chapter 5 • Procedures

; Ask the user to input a sequence of signed integers

call Crlf ; new line
 mov ecx,COUNT

L1: mov edx,OFFSET prompt
 call WriteString
 call ReadInt ; input integer into EAX
 call Crlf ; new line

; Display the integer in decimal, hexadecimal, and binary

call WriteInt ; display in signed decimal
call Crlf
call WriteHex ; display in hexadecimal
call Crlf
call WriteBin ; display in binary
call Crlf
call Crlf
Loop L1 ; repeat the loop

; Return the console window to default colors

call WaitMsg ; "Press any key..."
mov eax,DefaultColor
call SetTextColor
call Clrscr

exit
main ENDP
END main

Library Test #2: Random Integers
Let’s look at a second library test program that demonstrates random-number-generation capa-
bilities of the link library, and introduces the CALL instruction (to be covered fully in Section
5.5). First, it randomly generates 10 unsigned integers in the range 0 to 4,294,967,294. Next, it
generates 10 signed integers in the range �50 to �49:

; Link Library Test #2 (TestLib2.asm)

; Testing the Irvine32 Library procedures.

include Irvine32.inc

TAB = 9 ; ASCII code for Tab

.code
main PROC

call Randomize ; init random generator
call Rand1
call Rand2
exit

main ENDP

Rand1 PROC
; Generate ten pseudo-random integers.

mov ecx,10 ; loop 10 times

L1: call Random32 ; generate random int

5.4 The Irvine32 Library 175

call WriteDec ; write in unsigned decimal
mov al,TAB ; horizontal tab
call WriteChar ; write the tab
loop L1

call Crlf
ret

Rand1 ENDP

Rand2 PROC
; Generate ten pseudo-random integers from -50 to +49

mov ecx,10 ; loop 10 times

L1: mov eax,100 ; values 0-99
call RandomRange ; generate random int
sub eax,50 ; values -50 to +49
call WriteInt ; write signed decimal
mov al,TAB ; horizontal tab
call WriteChar ; write the tab
loop L1

call Crlf
ret

Rand2 ENDP
END main

Here is sample output from the program:

Library Test #3: Performance Timing
Assembly language is often used to optimize sections of code seen as critical to a program’s per-
formance. The GetMseconds procedure from the book’s library returns the number of millisec-
onds elapsed since midnight. In our third library test program, we call GetMseconds, execute a
nested loop, and call GetMSeconds a second time. The difference between the two values
returned by these procedure calls gives us the elapsed time of the nested loop:

; Link Library Test #3 (TestLib3.asm)

; Calculate the elapsed execution time of a nested loop

include Irvine32.inc

.data
OUTER_LOOP_COUNT = 3
startTime DWORD ?
msg1 byte "Please wait...",0dh,0ah,0
msg2 byte "Elapsed milliseconds: ",0

.code

3221236194 2210931702 974700167 367494257 2227888607

926772240 506254858 1769123448 2288603673 736071794

-34 +27 +38 -34 +31 -13 -29 +44 -48 -43

176 Chapter 5 • Procedures

main PROC
mov edx,OFFSET msg1 ; "Please wait..."
call WriteString

; Save the starting time

call GetMSeconds
mov startTime,eax

; Start the outer loop

mov ecx,OUTER_LOOP_COUNT

L1: call innerLoop
loop L1

; Calculate the elapsed time

call GetMSeconds
sub eax,startTime

; Display the elapsed time

mov edx,OFFSET msg2 ; "Elapsed milliseconds: "
call WriteString
call WriteDec ; write the milliseconds
call Crlf

exit
main ENDP

innerLoop PROC
push ecx ; save current ECX value

mov ecx,0FFFFFFFh ; set the loop counter
L1: mul eax ; use up some cycles

mul eax
mul eax
loop L1 ; repeat the inner loop

pop ecx ; restore ECX's saved value
ret

innerLoop ENDP

END main

Here is sample output from the program running on an Intel Core Duo processor:

Detailed Analysis of the Program
Let us study Library Test #3 in greater detail. The main procedure displays the string “Please
wait…” in the console window:

main PROC
mov edx,OFFSET msg1 ; "Please wait..."
call WriteString

Please wait....

Elapsed milliseconds: 4974

5.4 The Irvine32 Library 177

When GetMSeconds is called, it returns the number of milliseconds that have elapsed since mid-
night into the EAX register. This value is saved in a variable for later use:

call GetMSeconds
mov startTime,eax

Next, we create a loop that executes based on the value of the OUTER_LOOP_COUNT con-
stant. That value is moved to ECX for use later in the LOOP instruction:

mov ecx,OUTER_LOOP_COUNT

The loop begins with label L1, where the innerLoop procedure is called. This CALL instruction
repeats until ECX is decremented down to zero:

L1: call innerLoop
loop L1

The innerLoop procedure uses an instruction named PUSH to save ECX on the stack before set-
ting it to a new value. (We will discuss PUSH and POP in the upcoming Section 5.4.) Then, the
loop itself has a few instructions designed to use up clock cycles:

innerLoop PROC
push ecx ; save current ECX value

mov ecx,0FFFFFFFh ; set the loop counter
L1: mul eax ; use up some cycles

mul eax
mul eax
loop L1 ; repeat the inner loop

The LOOP instruction will have decremented ECX down to zero at this point, so we pop the saved
value of ECX off the stack. It will now have the same value on leaving this procedure that it had when
entering. The PUSH and POP sequence is necessary because the main procedure was using ECX as
a loop counter when it called the innerLoop procedure. Here are the last few lines of innerLoop:

pop ecx ; restore ECX's saved value
ret

innerLoop ENDP

Back in the main procedure, after the loop finishes, we call GetMSeconds, which returns its
result in EAX. All we have to do is subtract the starting time from this value to get the number of
milliseconds that elapsed between the two calls to GetMSeconds:

call GetMSeconds
sub eax,startTime

The program displays a new string message, and then displays the integer in EAX that repre-
sents the number of elapsed milliseconds:

mov edx,OFFSET msg2 ; "Elapsed milliseconds: "
call WriteString
call WriteDec ; display the value in EAX
call Crlf
exit

main ENDP

178 Chapter 5 • Procedures

5.4.5 Section Review
1. Which procedure in the link library generates a random integer within a selected range?

2. Which procedure in the link library displays “Press [Enter] to continue. . .” and waits for the
user to press the Enter key?

3. Write statements that cause a program to pause for 700 milliseconds.

4. Which procedure from the link library writes an unsigned integer to the console window in
decimal format?

5. Which procedure from the link library places the cursor at a specific console window
location?

6. Write the INCLUDE directive that is required when using the Irvine32 library.

7. What types of statements are inside the Irvine32.inc file?

8. What are the required input parameters for the DumpMem procedure?

9. What are the required input parameters for the ReadString procedure?

10. Which processor status flags are displayed by the DumpRegs procedure?

11. Challenge: Write statements that prompt the user for an identification number and input a
string of digits into an array of bytes.

5.5 64-Bit Assembly Programming

5.5.1 The Irvine64 Library
Our book provides a minimal library to assist you with 64-bit programming, containing the fol-
lowing procedures:

• Crlf: Writes an end-of-line sequence to the console.
• Random64: Generates a 64-bit pseudorandom integer in the range 0 to 264�1. The random

value is returned in the RAX register.
• Randomize: Seeds the random number generator with a unique value.
• ReadInt64: Reads a 64-bit signed integer from the keyboard, terminated by the Enter key. It

returns the integer value in the RAX register.
• ReadString: Reads a string from the keyboard, terminated by the Enter key. Pass it the offset

of the input buffer in RDX, and set RCX to the maximum number of characters the user can
enter, plus 1 (for the null terminator byte). It returns a count (in RAX) of the number of char-
acters typed by the user.

• Str_compare: Compares two strings. Pass it a pointer to the source string in RSI, and a
pointer to the target string in RDI. Sets the Zero and Carry flags in the same way as the CMP
(Compare) instruction.

• Str_copy: Copies a source string to the location indicated by a target pointer. Pass the source
offset in RSI, and the target offset in RDI.

• Str_length: Returns the length of a null-terminated string in the RAX register. Pass it the
string’s offset in RCX.

• WriteInt64: Displays the contents of the RAX register as a 64-bit signed decimal integer,
with a leading plus or minus sign. It has no return value.

5.5 64-Bit Assembly Programming 179

• WriteHex64: Displays the contents of the RAX register as a 64-bit hexadecimal integer. It
has no return value.

• WriteHexB: Displays the contents of the RAX register as a hexadecimal integer in either a
1-byte, 2-byte, 4-byte, or 8-byte format. Pass it the display size (1, 2, 4, or 8) in the RBX
register. It has no return value.

• WriteString: Displays a null-terminated ASCII string. Pass it the string’s 64-bit offset in
RDX. It has no return value.

Although this library is much smaller than our 32-bit library, it contains many of the essential
tools you need for making programs more interactive. You are also encouraged to expand this
library with your own code as you progress through the book. The Irvine64 library preserves the
values of the RBX, RBP, RDI, RSI, R12, R14, R14, and R15 registers. On the other hand, the
RAX, RCX, RDX, R8, R9, R10, and R11 register values are usually not preserved.

5.5.2 Calling 64-Bit Subroutines
If you want to call a subroutine you have created, or a subroutine in the Irvine64 library, all
you have to do is place input parameters in registers and execute the CALL instruction. For
example:

mov rax,12345678h
call WriteHex64

There’s one other small thing you have to do, which is to use the PROTO directive at the top of
your program to identify each procedure you plan to call that’s outside your own program:

ExitProcess PROTO ; located in the Windows API
WriteHex64 PROTO ; located in the Irvine64 library

5.5.3 The x64 Calling Convention
Microsoft follows a consistent scheme for passing parameters and calling procedures in 64-bit
programs known as the Microsoft x64 Calling Convention. This convention is used by C/C++
compilers, as well as by the Windows Application Programming Interface (API). The only
times you need to use this calling convention is when you either call a function in the Windows
API, or you call a function written in C or C++. Here are some of the basic characteristics of this
calling convention:

1. The CALL instruction subtracts 8 from the RSP (stack pointer) register, since addresses are
64-bits long.

2. The first four parameters passed to a procedure are placed in the RCX, RDX, R8, and R9,
registers, in that order. If only one parameter is passed, it will be placed in RCX. If there is a
second parameter, it will be placed in RDX, and so on. Additional parameters are pushed on
the stack, in left-to-right order.

3. It is the caller’s responsibility to allocate at least 32 bytes of shadow space on the runtime
stack, so the called procedures can optionally save the register parameters in this area.

4. When calling a subroutine, the stack pointer (RSP) must be aligned on a 16-byte boundary
(a multiple of 16). The CALL instruction pushes an 8-byte return address on the stack, so the
calling program must subtract 8 from the stack pointer, in addition to the 32 it already sub-
tracts for the shadow space. We will soon show how this is done in a sample program.

180 Chapter 5 • Procedures

The remaining details about the x64 calling convention will be introduced in Chapter 8, when
we discuss the runtime stack in greater detail. Here’s the good news: you do not have to use the
Microsoft x64 calling convention when calling subroutines in the Irvine64 library. You only need
to use it when calling Windows API functions.

5.5.4 Sample Program that Calls a Procedure
Let’s create a short program that uses the Microsoft x64 calling convention to call a subroutine
named AddFour. This subroutine adds the values in the four parameter registers (RCX, RDX,
R8, and R9) and saves the sum in RAX. Because procedures normally return integer values in
RAX, the calling program expects that value to be in this register when the subroutine returns. In
this way, we can say that the subroutine is a function, because it receives four inputs and (deter-
ministically) produces a single output.

 1: ; Calling a subroutine in 64-bit mode (CallProc_64.asm)
 2: ; Chapter 5 example
 3:
 4: ExitProcess PROTO
 5: WriteInt64 PROTO ; Irvine64 library
 6: Crlf PROTO ; Irvine64 library
 7:
 8: .code
 9: main PROC
10: sub rsp,8 ; align the stack pointer
11: sub rsp,20h ; reserve 32 bytes for shadow params
12:
13: mov rcx,1 ; pass four parameters, in order
14: mov rdx,2
15: mov r8,3
16: mov r9,4
17: call AddFour ; look for return value in RAX
18: call WriteInt64 ; display the number
19: call Crlf ; output a CR/LF
20:
21: mov ecx,0
22: call ExitProcess
23: main ENDP
24:
25: AddFour PROC
26: mov rax,rcx
27: add rax,rdx
28: add rax,r8
29: add rax,r9 ; sum is in RAX
30: ret
31: AddFour ENDP
32:
33: END

Let’s examine a few other details in the example: Line 10 aligns the stack pointer to an even
16-byte boundary. Why does this work? Before the OS called main, we assume the stack pointer

5.5 64-Bit Assembly Programming 181

was aligned on a 16-byte boundary. Then, when the OS called main, the CALL instruction
pushed an 8-byte return address on stack. Subtracting another 8 from the stack pointer drops it
down to a multiple of 16.

You can run this program in the Visual Studio debugger and watch the RSP register (stack
pointer) change values. When we did this, we saw the hexadecimal values shown graphically in
Fig. 5-11. The figure shows only the lower 32 bits of each address, since the upper 32 bits con-
tained all zeros:

1. Before line 10 executed, RSP = 01AFE48. This tells us that RSP was equal to 01AFE50
before the OS called our program. (The CALL instruction subtracts 8 from the stack pointer.)

2. After line 10 executed, RSP = 01AFE40, showing that the stack was properly aligned on a
16-byte boundary.

3. After line 11 executed, RSP = 01AFE20, showing that 32 bytes of shadow space were
reserved at addresses 01AFE20 through 01AFE3F.

4. Inside the AddFour procedure, RSP = 01AFE18, showing that the caller’s return address had
been pushed on the stack.

5. After AddFour returned, RSP again was equal to 01AFE20, the same value it had before call-
ing AddFour.

Rather than calling ExitProcess to end the program, we might have chosen to execute a
RET instruction, which would return to the process that launched our program. It would
require, however, that we restore the stack pointer to the way it was when the main procedure
began to execute. The following lines would be the replacement for lines 21–22 of the
CallProc_64 program:

21: add rsp,28 ; restore the stack pointer
22: mov ecx,0 ; process return code
23: ret ; return to the OS

Figure 5–11 Runtime stack for the CallProc_64 program.

Tip: When using the Irvine64 library, add the file named Irvine64.obj to your Visual Studio project.
To do this in Visual Studio, right-click the project name in the Solution Explorer window, select Add,
select Existing Item, and select the Irvine64.obj filename.

(return to OS) 0 1 A F E 4 8

0 1 A F E 4 0

shadow p1 0 1 A F E 3 8

shadow p2 0 1 A F E 3 0

shadow p3 0 1 A F E 2 8

shadow p4 0 1 A F E 2 0

(return to main) 0 1 A F E 1 8

182 Chapter 5 • Procedures

5.6 Chapter Summary
This chapter introduces the book’s link library to make it easier for you to process input–output
in assembly language applications.

Table 5-1 lists most of the procedures from the Irvine32 link library. The most up-to-date
listing of all procedures is available on the book’s Web site (www.asmirvine.com).

The library test program in Section 5.4.4 demonstrates a number of input–output func-
tions from the Irvine32 library. It generates and displays a list of random numbers, a register
dump, and a memory dump. It displays integers in various formats and demonstrates string
input–output.

The runtime stack is a special array that is used as a temporary holding area for addresses and
data. The ESP register holds a 32-bit OFFSET into some location on the stack. The stack is
called a LIFO structure (last-in, first-out) because the last value placed in the stack is the first
value taken out. A push operation copies a value into the stack. A pop operation removes a value
from the stack and copies it to a register or variable. Stacks often hold procedure return
addresses, procedure parameters, local variables, and registers used internally by procedures.

The PUSH instruction first decrements the stack pointer and then copies a source operand
into the stack. The POP instruction first copies the contents of the stack pointed to by ESP into a
destination operand and then increments ESP.

The PUSHAD instruction pushes the 32-bit general-purpose registers on the stack, and the
PUSHA instruction does the same for the 16-bit general-purpose registers. The POPAD instruc-
tion pops the stack into the 32-bit general-purpose registers, and the POPA instruction does the
same for the 16-bit general-purpose registers. PUSHA and POPA should only be used for 16-bit
programming.

The PUSHFD instruction pushes the 32-bit EFLAGS register on the stack, and POPFD pops
the stack into EFLAGS. PUSHF and POPF do the same for the 16-bit FLAGS register.

The RevStr program (Section 5.1.2) uses the stack to reverse a string of characters.

A procedure is a named block of code declared using the PROC and ENDP directives. A pro-
cedure’s execution ends with the RET instruction. The SumOf procedure, shown in Section 5.2.1,
calculates the sum of three integers. The CALL instruction executes a procedure by inserting the
procedure’s address into the instruction pointer register. When the procedure finishes, the RET
(return from procedure) instruction brings the processor back to the point in the program from
where the procedure was called. A nested procedure call occurs when a called procedure calls
another procedure before it returns.

A code label followed by a single colon is only visible within its enclosing procedure. A code label
followed by :: is a global label, making it accessible from any statement in the same source code file.

The ArraySum procedure, shown in Section 5.2.5, calculates and returns the sum of the ele-
ments in an array.

The USES operator, coupled with the PROC directive, lets you list all registers modified by a
procedure. The assembler generates code that pushes the registers at the beginning of the proce-
dure and pops the registers before returning.

5.7 Key Terms

5.7.1 Terms
arguments

console window

file handle

global label

input parameter

label

last-in, first-out (LIFO)

link library

nested procedure call

precondition

pop operation

push operation

runtime stack

stack abstract data type

stack data structure

stack pointer register

ENDP

POP

POPA

POPAD

POPFD

PROC

PUSH

PUSHA

PUSHAD

PUSHFD

RET

USES

5.7.2 Instructions, Operators, and Directives

5.8 Review Questions and Exercises

5.8.1 Short Answer
1. Which instruction pushes all of the 32-bit general-purpose registers on the stack?

2. Which instruction pushes the 32-bit EFLAGS register on the stack?

3. Which instruction pops the stack into the EFLAGS register?

4. Challenge: Another assembler (called NASM) permits the PUSH instruction to list multiple
specific registers. Why might this approach be better than the PUSHAD instruction in
MASM? Here is a NASM example:

PUSH EAX EBX ECX

5. Challenge: Suppose there were no PUSH instruction. Write a sequence of two other instruc-
tions that would accomplish the same as push eax.

6. (True/False): The RET instruction pops the top of the stack into the instruction pointer.

7. (True/False): Nested procedure calls are not permitted by the Microsoft assembler unless
the NESTED operator is used in the procedure definition.

8. (True/False): In protected mode, each procedure call uses a minimum of 4 bytes of stack
space.

9. (True/False): The ESI and EDI registers cannot be used when passing 32-bit parameters to
procedures.

5.8 Review Questions and Exercises 183

184 Chapter 5 • Procedures

10. (True/False): The ArraySum procedure (Section 5.2.5) receives a pointer to any array of
doublewords.

11. (True/False): The USES operator lets you name all registers that are modified within a pro-
cedure.

12. (True/False): The USES operator only generates PUSH instructions, so you must code POP
instructions yourself.

13. (True/False): The register list in the USES directive must use commas to separate the regis-
ter names.

14. Which statement(s) in the ArraySum procedure (Section 5.2.5) would have to be modified so
it could accumulate an array of 16-bit words? Create such a version of ArraySum and test it.

15. What will be the final value in EAX after these instructions execute?

push 5
push 6
pop eax
pop eax

16. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: push 10
 3: push 20
 4: call Ex2Sub
 5: pop eax
 6: INVOKE ExitProcess,0
 7: main ENDP
 8:
 9: Ex2Sub PROC
10: pop eax
11: ret
12: Ex2Sub ENDP

a. EAX will equal 10 on line 6
b. The program will halt with a runtime error on Line 10
c. EAX will equal 20 on line 6
d. The program will halt with a runtime error on Line 11

17. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: mov eax,30
 3: push eax
 4: push 40
 5: call Ex3Sub
 6: INVOKE ExitProcess,0
 7: main ENDP
 8:
 9: Ex3Sub PROC
10: pusha
11: mov eax,80
12: popa

5.8 Review Questions and Exercises 185

13: ret
14: Ex3Sub ENDP

a. EAX will equal 40 on line 6
b. The program will halt with a runtime error on Line 6
c. EAX will equal 30 on line 6
d. The program will halt with a runtime error on Line 13

18. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: mov eax,40
 3: push offset Here
 4: jmp Ex4Sub
 5: Here:
 6: mov eax,30
 7: INVOKE ExitProcess,0
 8: main ENDP
 9:
10: Ex4Sub PROC
11: ret
12: Ex4Sub ENDP

a. EAX will equal 30 on line 7
b. The program will halt with a runtime error on Line 4
c. EAX will equal 30 on line 6
d. The program will halt with a runtime error on Line 11

19. Which statement is true about what will happen when the example code runs?

 1: main PROC
 2: mov edx,0
 3: mov eax,40
 4: push eax
 5: call Ex5Sub
 6: INVOKE ExitProcess,0
 7: main ENDP
 8:
 9: Ex5Sub PROC
10: pop eax
11: pop edx
12: push eax
13: ret
14: Ex5Sub ENDP

a. EDX will equal 40 on line 6
b. The program will halt with a runtime error on Line 13
c. EDX will equal 0 on line 6
d. The program will halt with a runtime error on Line 11

20. What values will be written to the array when the following code executes?

.data
array DWORD 4 DUP(0)
.code

186 Chapter 5 • Procedures

main PROC
mov eax,10
mov esi,0
call proc_1
add esi,4
add eax,10
mov array[esi],eax
INVOKE ExitProcess,0

main ENDP

proc_1 PROC
call proc_2
add esi,4
add eax,10
mov array[esi],eax
ret

proc_1 ENDP

proc_2 PROC
call proc_3
add esi,4
add eax,10
mov array[esi],eax
ret

proc_2 ENDP

proc_3 PROC
mov array[esi],eax
ret

proc_3 ENDP

5.8.2 Algorithm Workbench
The following exercises can be solved using either 32-bit or 64-bit code.

1. Write a sequence of statements that use only PUSH and POP instructions to exchange the
values in the EAX and EBX registers (or RAX and RBX in 64-bit mode).

2. Suppose you wanted a subroutine to return to an address that was 3 bytes higher in memory
than the return address currently on the stack. Write a sequence of instructions that would be
inserted just before the subroutine’s RET instruction that accomplish this task.

3. Functions in high-level languages often declare local variables just below the return address
on the stack. Write an instruction that you could put at the beginning of an assembly language
subroutine that would reserve space for two integer doubleword variables. Then, assign the
values 1000h and 2000h to the two local variables.

4. Write a sequence of statements using indexed addressing that copies an element in a double-
word array to the previous position in the same array.

5. Write a sequence of statements that display a subroutine’s return address. Be sure that what-
ever modifications you make to the stack do not prevent the subroutine from returning to its
caller.

5.9 Programming Exercises 187

5.9 Programming Exercises
When you write programs to solve the programming exercises, use multiple procedures when
possible. Follow the style and naming conventions used in this book, unless instructed otherwise
by your instructor. Use explanatory comments in your programs at the beginning of each proce-
dure and next to nontrivial statements.

1. Draw Text Colors
Write a program that displays the same string in four different colors, using a loop. Call the Set-
TextColor procedure from the book’s link library. Any colors may be chosen, but you may find
it easiest to change the foreground color.

2. Linking Array Items
Suppose you are given three data items that indicate a starting index in a list, an array of charac-
ters, and an array of link index. You are to write a program that traverses the links and locates the
characters in their correct sequence. For each character you locate, copy it to a new array. Sup-
pose you used the following sample data, and assumed the arrays use zero-based indexes:

start = 1
chars: H A C E B D F G
links: 0 4 5 6 2 3 7 0

Then the values copied (in order) to the output array would be A,B,C,D,E,F,G,H. Declare the
character array as type BYTE, and to make the problem more interesting, declare the links array
type DWORD.

3. Simple Addition (1)
Write a program that clears the screen, locates the cursor near the middle of the screen, prompts
the user for two integers, adds the integers, and displays their sum.

4. Simple Addition (2)
Use the solution program from the preceding exercise as a starting point. Let this new program
repeat the same steps three times, using a loop. Clear the screen after each loop iteration.

5. BetterRandomRange Procedure
The RandomRange procedure from the Irvine32 library generates a pseudorandom integer between
0 and N � 1. Your task is to create an improved version that generates an integer between M and
N�1. Let the caller pass M in EBX and N in EAX. If we call the procedure BetterRandomRange, the
following code is a sample test:

mov ebx,-300 ; lower bound
mov eax,100 ; upper bound
call BetterRandomRange

Write a short test program that calls BetterRandomRange from a loop that repeats 50 times.
Display each randomly generated value.

★

★★

★

★★

★

188 Chapter 5 • Procedures

6. Random Strings
Create a procedure that generates a random string of length L, containing all capital letters.
When calling the procedure, pass the value of L in EAX, and pass a pointer to an array of byte
that will hold the random string. Write a test program that calls your procedure 20 times and dis-
plays the strings in the console window.

7. Random Screen Locations
Write a program that displays a single character at 100 random screen locations, using a timing
delay of 100 milliseconds. Hint: Use the GetMaxXY procedure to determine the current size of
the console window.

8. Color Matrix
Write a program that displays a single character in all possible combinations of foreground and
background colors (16 � 16 � 256). The colors are numbered from 0 to 15, so you can use a
nested loop to generate all possible combinations.

9. Recursive Procedure
Direct recursion is the term we use when a procedure calls itself. Of course, you never want to
let a procedure keep calling itself forever, because the runtime stack would fill up. Instead, you
must limit the recursion in some way. Write a program that calls a recursive procedure. Inside
this procedure, add 1 to a counter so you can verify the number of times it executes. Run your
program with a debugger, and at the end of the program, check the counter’s value. Put a num-
ber in ECX that specifies the number of times you want to allow the recursion to continue. Using
only the LOOP instruction (and no other conditional statements from later chapters), find a way
for the recursive procedure to call itself a fixed number of times.

10. Fibonacci Generator
Write a procedure that produces N values in the Fibonacci number series and stores them in an
array of doubleword. Input parameters should be a pointer to an array of doubleword, a
counter of the number of values to generate. Write a test program that calls your procedure,
passing N = 47. The first value in the array will be 1, and the last value will be 2,971,215,073.
Use the Visual Studio debugger to open and inspect the array contents.

11. Finding Multiples of K
In a byte array of size N, write a procedure that finds all multiples of K that are less than N. Ini-
tialize the array to all zeros at the beginning of the program, and then whenever a multiple is
found, set the corresponding array element to 1. Your procedure must save and restore any regis-
ters it modifies. Call your procedure twice, with K = 2, and again with K = 3. Let N equal to 50.
Run your program in the debugger and verify that the array values were set correctly. Note: This
procedure can be a useful tool when finding prime integers. An efficient algorithm for finding
prime numbers is known as the Sieve of Eratosthenes. You will be able to implement this algo-
rithm when conditional statements are covered in Chapter 6.

★★

★

★★

★★★

★★★

★★★

189

6
Conditional Processing

6.1 Conditional Branching
6.2 Boolean and Comparison Instructions

6.2.1 The CPU Status Flags
6.2.2 AND Instruction
6.2.3 OR Instruction
6.2.4 Bit-Mapped Sets
6.2.5 XOR Instruction
6.2.6 NOT Instruction
6.2.7 TEST Instruction
6.2.8 CMP Instruction
6.2.9 Setting and Clearing Individual CPU Flags
6.2.10 Boolean Instructions in 64-Bit Mode
6.2.11 Section Review

6.3 Conditional Jumps
6.3.1 Conditional Structures
6.3.2 Jcond Instruction
6.3.3 Types of Conditional Jump Instructions
6.3.4 Conditional Jump Applications
6.3.5 Section Review

6.4 Conditional Loop Instructions
6.4.1 LOOPZ and LOOPE Instructions
6.4.2 LOOPNZ and LOOPNE Instructions
6.4.3 Section Review

6.5 Conditional Structures
6.5.1 Block-Structured IF Statements
6.5.2 Compound Expressions

6.5.3 WHILE Loops
6.5.4 Table-Driven Selection
6.5.5 Section Review

6.6 Application: Finite-State Machines
6.6.1 Validating an Input String
6.6.2 Validating a Signed Integer
6.6.3 Section Review

6.7 Conditional Control Flow Directives
6.7.1 Creating IF Statements
6.7.2 Signed and Unsigned Comparisons
6.7.3 Compound Expressions
6.7.4 Creating Loops with .REPEAT

and .WHILE

6.8 Chapter Summary
6.9 Key Terms

6.9.1 Terms
6.9.2 Instructions, Operators, and Directives

6.10 Review Questions and Exercises
6.10.1 Short Answer
6.10.2 Algorithm Workbench

6.11 Programming Exercises
6.11.1 Suggestions for Testing Your Code
6.11.2 Exercise Descriptions

