
Copyright © 2020 Mahmoud El-Sakka.

CS2208b Lab No. 5
Introduction to Computer Organization and Architecture

Tuesday March 17, 2020 (section 8 @ HSB-13 from 3:30 pm to 4:30 pm)

Wednesday March 18, 2020 (section 6 @ HSB-16 from 1:30 pm to 2:30 pm)

Wednesday March 18, 2020 (section 10 @ HSB-16 from 3:30 pm to 4:30 pm)

Thursday March 19, 2020 (section 11 @ HSB-14 from 11:30 am to 12:30 pm)

Thursday March 19, 2020 (section 4 @ HSB-14 from 1:30 pm to 2:30 pm)

Thursday March 19, 2020 (section 5 @ HSB-14 from 3:30 pm to 4:30 pm)

Thursday March 19, 2020 (section 7 @ HSB-13 from 4:30 pm to 5:30 pm)
The objective of this lab is:

o To practice ARM subroutine call and return

If you would like to leave, and at least 30 minutes have passed, raise your hand and wait for the TA.
Show the TA what you did. If, and only if, you did a reasonable effort during the lab, the TA will give you the lab mark.

==
Bubble sort algorithm
The bubble sort is a simple sorting algorithm that repeatedly steps through
the list to be sorted, compares each pair of adjacent items and swaps them if
they are in the wrong order. The pass through the list is repeated until no
swaps are needed, which indicates that the list is sorted. The algorithm,
which is a comparison sort, is named for the way smaller elements bubble
to the top of the list. This flowchart describes the algorithm. Below, is an
implementation of this flowchart using C.
int main()
{ int a[]={44, -56, 300, 65, -8, 32, 6, -87,
 54, 65, 87, 32, 65};
 int n, i, j;

 n = sizeof(a)/sizeof(a[0]);
 for (i = 0; i < n-1; i++)
 { for (j = 0; j < n-1-i; j++)
 sortTwo(&a[j], &a[j+1]);
 }
 return 0;
}

In ARM assembly, you can convert the algorithm as follows:
main ADR r0,a ;r0 is a pointer to array a
 ADR r1,endOfArray ;address at the end of the array
 SUB r1,r1,r0 ;r1: the length of the array in bytes
 ASR r1,#2 ;r1: the number of element in the array, i.e., n

 MOV r2,#0 ;r2: outer loop counter,i.e., i
 SUB r4,r1,#1 ;r4 is (n - 1)
startOuter CMP r2,r4 ;compare i with (n - 1)
 BGE endOuter ;if i >= (n - 1), then exit the outer loop
 MOV r3,#0 ;r3 is the inner loop counter, i.e., j
 SUB r5,r4,r2 ;r5 is (n - 1 - i)
startInner CMP r3,r5 ;compare j with (n - 1 - j)
 BGE endInner ;if j >= (n - 1 -j), then exit the inner loop
 ADD r6,r0,r3,LSL#2;r6 is a pointer to a[j]
 ADD r7,r6,#4 ;r7 is a pointer to a[j+1]
 BL sortTwo ;call sortTwo(*a[j],*a[j+1])
 ADD r3,r3,#1 ;increment inner counter j
 B startInner ;loop again (inner loop)
endInner ADD r2,r2,#1 ;increment outer counter i
 B startOuter ;loop again (outer loop)
endOuter B endOuter

a DCD 44,-56,3,65,-8,32,6,-87,54,65,87,32,65
endOfArray SPACE 1

START

i 0

i < n – 1

j  0

j < n – 1 – i

sortTwo(&a[j], &a[j+1])

j++

i++

STOP

YES

YES

NO

NO

sortTwo(*x, *y)

*y < *x

Swab *x and *y

RETURN

YES

NO

Copyright © 2020 Mahmoud El-Sakka.

PROBLEM SET

Before you start practicing this lab, you need to review and fully understand how to use the Keil ARM
Simulator, as well as tutorial 10 (Tutorial_10_ARM_Subroutine_Call_and_Return.pdf).

1. Fully understand the two codes above.

2. Implement the sortTwo function. The function must not alter any general register value. If you want to use any, you
have to store the original value in the stack before changing them, and you have to retrieve the original value before
returning from the function.

3. Change the main and the sortTwo functions in such a way that you utilize the stack to store/retrieve the return
address when calling/returning from the sortTwo function, i.e., do not use the LR.

4. Change the main in such a way that if no change occurs inside the inner loop for one full cycle, then you exit the outer
loop, as the list will be already sorted in such a situation.

