
Copyright © 2020 Mahmoud El-Sakka.

CS2208b Lab No. 2
Introduction to Computer Organization and Architecture

Tuesday February 25, 2020 (section 8 @ HSB-13 from 3:30 pm to 4:30 pm)

Wednesday February 26, 2020 (section 6 @ HSB-16 from 1:30 pm to 2:30 pm)

Wednesday February 26, 2020 (section 10 @ HSB-16 from 3:30 pm to 4:30 pm)

Thursday February 27, 2020 (section 11 @ HSB-14 from 11:30 am to 12:30 pm)

Thursday February 27, 2020 (section 4 @ HSB-14 from 1:30 pm to 2:30 pm)

Thursday February 27, 2020 (section 5 @ HSB-14 from 3:30 pm to 4:30 pm)

Thursday February 27, 2020 (section 7 @ HSB-13 from 4:30 pm to 5:30 pm)
The objective of this lab is to practice:

o ARM data definition directives
o ARM assembly pseudo instructions

If you would like to leave, and at least 30 minutes have passed, raise your hand and wait for the TA.
Show the TA what you did. If, and only if, you did a reasonable effort during the lab, the TA will give you the lab mark.

==

REVIEW
ARM pseudo-instructions
The ARM assembler supports a number of pseudo-instructions that are translated into the appropriate combination of
ARM instructions at assembly time. ARM pseudo-instructions include:

LDR ARM pseudo-instruction

The LDR pseudo-instruction loads a register with either:
 a 32-bit constant value
 an address

Note that, the LDR instruction can also be used as non-pseudo-instruction, e.g., LDR r1,[r2]

Syntax
The syntax of LDR when it is used as pseudo-instruction is:

LDR{condition} register,=[expression | label-expression]
where:

condition is an optional condition code,
register is the register to be loaded,
expression evaluates to a numeric constant:
 If the value of expression is within the range of a MOV or MVN instruction, the assembler generates the

appropriate MOV or MVN instruction to perform the task.
 If the value of the expression is not within the range of a MOV or MVN instruction, the assembler places the

constant in a literal pool and generates a program-counter-relative LDR instruction that reads the constant
from the literal pool.
The offset from the PC to the constant must be less than 4KB.

label-expression is a program-counter-relative expression.
The assembler places the value of label-expression (i.e., an address) in a literal pool and generates a
program-counter-relative LDR instruction that loads the value from the literal pool.
The offset from the PC to the value in the literal pool must be less than 4KB.

Usage
The LDR pseudo-instruction is used for two main purposes:
 to load a literal constant to a register when an immediate value cannot be moved into the register because it is out of

range of the MOV and MVN instructions, which must be represented by a value from 0 to 255 and a rotation.
 to load a program-counter-relative address into a register.

Example
 LDR r1,=0xfff ; loads 0xfff into r1
 LDR r2,=place ; loads the address of place into r2

Copyright © 2020 Mahmoud El-Sakka.

ADR ARM pseudo-instruction

The ADR pseudo-instruction uses to load a lable address into a register.

Syntax
The syntax of ADR is:

ADR{condition} register, lable expression
where:

condition is an optional condition code,
register is the register to load,
lable expression is to evaluate to an address.
The address can be either before or after the address of the instruction.

Usage
ADR always assembles to one instruction. The assembler attempts to produce a single ADD or SUB instruction to load
the address. The distance between the address in the lable expression and the ADR instruction MUST be represented as a
value from 0 to 255 and a rotation.

Example
start MOV r0,#10
 ADR r4,start ; => SUB r4,pc,#0xc

Copyright © 2020 Mahmoud El-Sakka.

PROBLEM SET

Before you start practicing this lab, you need to review and fully understand tutorials 6 and 7
(Tutorial_06_ARM_Data_Definition_Directives.pdf and
 Tutorial_07_ARM_Pseudo Instructions).
1. Consider the following assembly programs:

 AREA More_data_definitions, CODE, READONLY
 ENTRY
loop B loop

data_1 SPACE 3
data_2 SPACE 3
 ALIGN
data_3 SPACE 3
 DCD 0x12345678
 DCD +2_1111000011110000
 DCD -2_1111000011110000

 DCW 255
 DCW -255

 DCB &0A
 ALIGN

 DCD 1,2,3,4
 DCB 5
 DCD 6

 END

The above program consists of one instruction (the machine code of this branch instruction is “0xEAFFFFFE”) and a
bunch of data definition directives.

Manually calculate the memory map for the entire program, i.e., mention the address location and the content of
each memory location of this program. Use this information to fill the table above. Verify your calculations by
assembling the above program and compare the generated machine language code with your calculations.

2. The ARM uses a pipeline to increase the speed of the flow of instructions to the processor. This allows several
operations to take place simultaneously. Instructions are executed in three pipeline stages: fetch, decode, and execute.
During normal operation, while one instruction is being executed, its successor is being decoded, and a third
instruction is being fetched from memory. Hence, when an ARM processor starts executing an instruction, the PC will
not be pointing to that instruction anymore.
Consider the following instruction:
 MOV r0, pc
Use the Keil simulator to write, assemble, and run the above program fragment.
Note that you will need to use appropriate assembly directives to make this program fragment a program.
What did you find the value of r0 after executing the instruction? Justify your findings.

3. Consider the following instructions:
 LDR r1, [r0]
 LDR r2, = 0x12345678
 LDR r3, = 0x12
Use the Keil simulator to write, assemble, and run the above program fragment.
Note that you will need to use appropriate assembly directives to make this program fragment a program.

Study and relate the generated disassembled code to the code written above. Specifically, you need to understand the
role of the PC register and the location of the literal pool, as well as the pipeline effect, in this situation.

Addresses 1st byte 2nd byte 3rd byte 4th byte Comments
0x00000000 0xEA 0xFF 0xFF 0xFE B instruction encoding
0x00000004
0x00000008
0x0000000C
0x00000010
0x00000014
0x00000018
0x0000001C
0x00000020
0x00000024
0x00000028
0x0000002C
0x00000030
0x00000034
0x00000038
0x0000003C

Copyright © 2020 Mahmoud El-Sakka.

Why is each LDR instruction encoded differently?

4. Consider the following instructions:
 LDR r3, X
 LDR r4, =X
 ADR r5, X
loop B loop
X DCD 0x70707070

Use the Keil simulator to write, assemble, and run the above program fragment.
Note that you will need to use appropriate assembly directives to make this program fragment a program.

Study and relate the generated disassembled code to the code written above. Specifically, you need to understand the
role of the PC register and the location of the literal pool, as well as the pipeline effect, in this situation.

5. Consider the following assembly programs:

Use the Keil simulator to run the above two programs.
Study and compare the generated disassembled code for the LDR instruction in each program.
Justify the difference between the two generated codes. Think of the location of the literal pool.

6. Consider the following assembly program:
 area program, code, readonly
 ENTRY
N EQU 4
 LDR r0,=X1
loop B loop
 SPACE N
X1 DCD 0x12345678
 END

Use the Keil simulator to write, assemble, and run the above program fragment.
You need to understand how the “LDR r0,=X1” instruction is implemented.

What is the largest possible N that you can have in this program without having any errors? Why?
Verify your answer by editing, assembling, and running the program.

 AREA prog2, CODE, READONLY
 ENTRY
 LDR r0, = 0x12345678
loop B loop

X DCD 0x70707070
 END

 AREA prog1, CODE, READONLY
 ENTRY
 LDR r0, = 0x12345678
loop B loop

 AREA prog1, DATA, READONLY
X DCD 0x70707070
 END

