
Copyright © 2020 Mahmoud El-Sakka.  

CS2208b Lab No. 3 
Introduction to Computer Organization and Architecture 

Tuesday      March 3, 2020 (section   8 @ HSB-13 from    3:30 pm to  4:30 pm) 

Wednesday March 4, 2020 (section   6 @ HSB-16 from    1:30 pm to  2:30 pm) 

Wednesday March 4, 2020 (section 10 @ HSB-16 from   3:30 pm to  4:30 pm) 

Thursday    March 5, 2020 (section 11 @ HSB-14 from  11:30 am to 12:30 pm) 

Thursday    March 5, 2020 (section   4 @ HSB-14 from    1:30 pm to  2:30 pm) 

Thursday    March 5, 2020 (section   5 @ HSB-14 from    3:30 pm to  4:30 pm) 

Thursday    March 5, 2020 (section   7 @ HSB-13 from    4:30 pm to  5:30 pm) 
The objective of this lab is to practice:  

o ARM shift operations 
o ARM addressing modes 
o ARM instructions encoding 

If you would like to leave, and at least 30 minutes have passed, raise your hand and wait for the TA.  
Show the TA what you did. If, and only if, you did a reasonable effort during the lab, the TA will give you the lab mark.  
==================================================================================== 
REVIEW 
ADDRESSING MODES 
An addressing mode is simply a means of expressing the location of an operand. An address can be a register such as r3 
or PC (Program Counter). An address can be a location in memory such as address 0x12345678. You can even express 
an address indirectly by saying, for example, “the address is loaded in register r1”. The various ways of expressing the 
location of data are called collectively addressing modes. 
 

Suppose someone said, “Here are ten dollars”. They are giving you the actual item. This is called a literal or immediate 
value because it is what you actually get. Unlike all other addressing modes, you do not have to retrieve addresses from a 
register or memory location. 
 

If someone says, “Go to this full address in the world and you will find the money on the table”, they are actually telling 
you where the money is (i.e., its address or its actual location). This is called an absolute address because it expresses 
exactly where the money is in absolute terms. This addressing mode is also called direct addressing. ARM processors do 
not support this addressing mode. 
 

Now here is where the fun starts. Suppose someone says, “Go to room 12 in this building and you will find something to 
your advantage on the table”. You arrive in room 12 and see a message on the table saying, “The money is in this full 
address in the world”. In this case, we have an indirect address because room 12 does not have the money, but a pointer 
to where it is. We have to go to a second address to get the money. Indirect addressing is also called pointer-based 
addressing because you can think of the note in room 12 as pointing to the actual data. 
 

In real life, we do not confuse a room number or an address with a sum of money. However, in a computer, all data is 
stored in binary form and the programmer has to remember whether a variable (or constant) is an address or a data 
value. 
 

Immediate (literal) addressing is indicated by a ‘#’ symbol in front of the operand. Thus, #5 in an instruction means the 
actual value 5. A typical ARM instruction is MOV r0,#5 which means move the value 5 into register r0. 
 

Indirect addressing is indicated by ARM processors by placing the pointer in square parentheses; for example, [r1]. 
All ARM indirect addresses are of the basic form LDR r0,[r1] or STR r3,[r6].  
There are variations on this addressing mode; for example, LDR r0,[r1,#4]specifies an address that is four bytes 
from the location pointed at by the contents of register r1. It can also have a side effect, such as autoindexing pre-indexed 
addressing mode, e.g., LDR r0,[r1,#4]! or autoindexing post-indexed addressing mode, e.g., LDR r0,[r1],#4 
In all these indirect addressing modes, the offset can be a constant, i.e., static (as indicated in the above examples), or 
dynamic, by putting the value of the offset in a register, e.g.,  
LDR r0,[r1,r2]  
LDR r0,[r1,r2]!  
LDR r0,[r1],r2 
All offsets associated with indirect addressing (regardless of constant or dynamic) can be positive or negative. 
 
  
 



Copyright © 2020 Mahmoud El-Sakka.  

PROBLEM SET 

Before you start practicing this lab, you need to review and fully understand tutorials 8 and 9 
(Tutorial_08_ARM_Shift_Instructions.pdf and Tutorial_09_ARM_Addressing_Modes.pdf). 
 

1. Consider the following assembly program: 
 
     AREA prog1, code, READONLY 
     ENTRY 
     MOV r3,#2 
     LDR r1, =0xCCCCCCCC ;in binary 1100 1100 1100 1100 1100 1100 1100 1100 
   
     LSL r1,r1,#5 
     LSL r1,r1,r3 
     LSR r1,r1,#10 
     LSR r1,r1,r3 
     ASR r1,r1,#2   
     LSL r1,r1,#15 
     ASR r1,r1,#16 
   
     ASR r1,r1,r3 
  
     ROR r1,r1,#4   
     ROR r1,r1,r3 
     RRX r1,r1 
     RRX r1,r1 
     RRX r1,r1  
     RRX r1,r1   
loop B   loop 
     END 
Manually calculate the value of r1 after executing each instruction. Verify your calculations by assembling the 
above program and compare the program output with your calculations. 
 

2. The following assembly program adds together a LIST of five numbers stored in memory. 
 
 AREA Pointers, CODE, READONLY 
 ENTRY 
Start ADR  r0,List  ;register r0 points to List 
 MOV  r1,#5  ;initialize loop counter in r1 to 5 
 MOV  r2,#0  ;clear the sum in r2 
Loop LDR  r3,[r0]  ;copy the element pointed at by r0 to r3 
 ADD  r0,r0,#4  ;point to the next element in the series 
 ADD  r2,r2,r3  ;add the element to the running total 
 SUBS r1,r1,#1  ;decrement to the loop counter 
 BNE  Loop  ;repeat until all elements added 
Endless B    Endless  ;infinite loop 
List DCD  3,4,3,6,7 ;the numbers to be added together 
  ;each one is 4 bytes (20 bytes in total) 
 END 
 
(a) Modify the original program to utilize: 
   ○ Autoindexing pre-indexed addressing mode 
   ○ Autoindexing post-indexed addressing mode  
 
(b) Modify the original program by eliminating the instruction  “ADD r0,r0,#4”, while keeping the functionality  
     of the program the same, without using any autoindexing mode. Think of utilizing the loop counter instead.  
 



Copyright © 2020 Mahmoud El-Sakka.  

3. Using only 7 ARM assembly instructions, execute the following flowchart. 
Test your code by assigning various values to r0, r1, r2, and r3. 
 
 
 
 
 
 
 
 
 
 
 

4. Without using any of the ARM multiplication instructions, write only one ARM instruction that executes  
[R4]  16385 × [R4]. 
Manually generate the machine language code for this instruction and verify it using the simulator. 
 
 
 

5. What is the machine language of  AND r2,r3,#0x1080 
Verify it using the simulator. 
 

6. What is the reverse assembly of the following machine language instruction:  
(a) 0x00000000 
(b) 0x50076808 
(c) 0xE3A01D22 
(d) 0xE3A01E88 
Verify it using the simulator. Hint: you may want to consult Table 3.2 and figure 3.26 in the textbook. 

Yes

[r0] is 
even?

[r1]  [r1] >> [r0]

[r2]  [r2] << [r0]

[r1]  [r1]  <<  8

[r2]  [r2]  >>  8

No

[r4]  [r1] + [r2] + ([r3] ÷ 16)


