
Copyright © 2020 Mahmoud El-Sakka.

CS2208b Lab No. 4
Introduction to Computer Organization and Architecture

Tuesday March 10, 2020 (section 8 @ HSB-13 from 3:30 pm to 4:30 pm)

Wednesday March 11, 2020 (section 6 @ HSB-16 from 1:30 pm to 2:30 pm)

Wednesday March 11, 2020 (section 10 @ HSB-16 from 3:30 pm to 4:30 pm)

Thursday March 12, 2020 (section 11 @ HSB-14 from 11:30 am to 12:30 pm)

Thursday March 12, 2020 (section 4 @ HSB-14 from 1:30 pm to 2:30 pm)

Thursday March 12, 2020 (section 5 @ HSB-14 from 3:30 pm to 4:30 pm)

Thursday March 12, 2020 (section 7 @ HSB-13 from 4:30 pm to 5:30 pm)
The objective of this lab is:

o To practice ARM assemble programing
If you would like to leave, and at least 30 minutes have passed, raise your hand and wait for the TA.
Show the TA what you did. If, and only if, you did a reasonable effort during the lab, the TA will give you the lab mark.
==
PROBLEM SET
1. Translate the following tasks into a single ARM instruction:

a. Add 32 times of the content of registers r0 and the content of r1 only if N is clear. Store the result in register r2

b. Subtract the content of register r0 from 0x990 and put the results in register r3 only if C is set and Z is clear.

c. Clear the 2nd least significant byte of the content of register r1, i.e., store (00000000)2 in it, and put the results
in register r4. The result of the instruction must affect the value of the Current Program Status Register (CPSR).

Test your answers by putting them in a program, which starts by assigning values to r0 and r1 and then comparing
them together to set/clear the flags in such a way to test both cases of (a), (b), and (c). Note that you will need two sets
of r0 and r1 values for each case. Hint: you may want to consider Table 3.2 in the textbook.

Encode by hand the instructions that you suggested for (a), (b), and (c), i.e., generate the 4-byte machine language for
each ARM instruction. Verify your answers using Keil’s simulator.

2. Convert the GCD algorithm given in this flowchart into

a. Traditional assembly, where only branches can be conditional,

i.e., do not utilize the ARM conditional execution feature.

b. ARM assembly, where any instructions can be conditional, thus
improving code density.

PS: The only instructions you need are CMP, B, and SUB.

Test your code by assigning various values to r0 and r1 using MOV
instruction.

3. Our ARM7 does not have any division instruction. Yet, you still can
implement division by utilizing ASR. Basically, if you want to divide
the content of a register by 10, you multiply it by 6554, and then you shift the result using ASR#16. The effective
result is 6554 ÷ 216 = 6554 ÷ 65536 = 1/10, which is division by 10.

Write an ARM assembly program to divide the content of r0 by 10 and store the result in r1.
Test your code by assigning various values to r0
Hints: Numbers are internally represented in Hexadecimal.

4. What is the reverse assembly of the following machine language instruction: 0xE6DCA408?
Verify it using the simulator. Hint: you may want to consider Figure 3.39 in the textbook.

Yes

[r0] > [r1]

[r0] [r0] – [r1] [r1] [r1] – [r0]

No

[r0] == [r1]

Start

Stop

Yes

No

