
Project 5: Geography Quiz - Additional hints and explanations

Phase I

• Your program must be in the package edu.uga.cs1302.quiz.

Create a Maven project for Geography Quiz, update the pom.xml file, and remove the sample Apps.
You should add a suitable dependency fragment to the pom.xml file in order to handle the Apache
Commons CSV jar file automatically. Maven is very good in this regard. Here is the needed
fragment:
 <dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-csv</artifactId>
 <version>1.8</version>
 </dependency>

Place it right after the dependency for junit in the pom.xml file.

• All classes described below should be placed in the correct directory in your Maven project.
Keep in mind that this document should be treated only as a guide and not as a requirement on how
to create your project 5 solution. You can have fewer or more classes, with different names and
objectives. Only the GeorgaphyQuiz class with the main method is required.

• Start by creating the Country and QuestionCollection classes. The first should represent a
single country with its name and continent. The second should have all of the countries stored
internally on an ArrayList of Country, as required. You should have the usual constructors, as
well as setters/getters. The QuestionCollection class should read the countries from the CSV
file and for each row, create a new Country class instance and add it to the list. This class should
also have a method to return a country at a specific index position (0 through 195). Test it by
printing all countries stored in the QuestionCollection class.

I created a simple example for reading from a CSV file. It is on odin in my
~kkochut/cs1302/csvreading directory. It is a Maven project, so you may want to see how to
include a dependency for the CSV reading library in the pom.xml file. There is a README.txt file
which explains how to compile and then run this example. Please, read this file carefully.

• Create a class called Question to represent a single country question with 3 possible answers. This
class will be a bit more involved, as you will need to randomly pick possible answers. Note that
generating a quiz composed of 6 questions will be done in a different class, so randomly selecting
countries will not be done in the Question class – just the possible continents as the possible
answers.
I would suggest doing all the work in the constructor. The constructor could accept a Country
object as its argument (to be randomly generated elsewhere) and then, based on the country,
randomly generate the additional 2 continents. You may use either the Math class or the Random
class, as stated in the project description. However, I would suggest the ThreadLocalRandom class,
which is a preferred method of generating random numbers in Java 8 and newer. The call to
generate a random integer value within a range 0 to maximum (exclusive, i.e., the highest generated
value may be maximum-1):
int randomValue = ThreadLocalRandom.current().nextInt(maximum);

So, given an array continents, with the 7 continents (including Antarctica), you could generate a
continent at random by executing:
int randomValue = ThreadLocalRandom.current().nextInt(continents.length);

Make sure you avoid duplicates! Simply, store the already generated (previously) value and if the
next generated value is the same, generate again (until you get a different value).
Finally, create an array for storing the 3 continents (possible answers) and then randomly generate an
index (0, 1, or 2) where you’d store the correct continent and store the correct answer there. Then,
store the remaining 2 continents in the other 2 array cells (this should be easy enough).

Add a print method to output a question for easy testing.

• Create a class called Quiz to represent a single quiz with 6 questions. This class should create a new
quiz in its constructor. You may want to use the same random number generating class as described
above. Now, you will be drawing countries from your QuestionCollection class. For each
randomly generated Country, create a Question by calling the constructor with the selected
Country as argument and add it to the list of questions (LinkedList or ArrayList). Make sure to
avoid duplicating countries in the same quiz, as described above.

You should have a method returning individual questions from the Quiz. Also, add methods to keep
the total score for a quiz as the player is taking it.

Add a print method (to print the 6 questions) for easy testing.

• Create a QuizResult class to represent quiz scores and dates. Remember to use a list
(LinkedList or ArrayList) and to state that it implements the Serializable interface so that
objects can be written to disk.

MILESTONE

• At this point, you should be able to consistently generate quizzes with properly selected answers.
Create a simple main method (temporarily) to generate a quiz and print it out to verify that all is
working properly. You should also create a few quiz results and store them in the QuizResult
class. Write an object of this class to disk and read it back the next time you run the main method to
verify if writing/reading is working properly.

• In order to run your main method, follow the directions included in the README.txt file in the
csvreading example on odin (in my directory ~kkochut/cs1302/csvreading).

Phase II

• Design the GUI scenes using suitable controls, as described in the project assignment. The GUI
programming should not be difficult.

• Start by creating the main JavaFX class called GeorgaphyQuiz (extending from Application). The
main window should have the 4 required buttons, as described in the project description. You may
start by implementing the handler for the Quit button and test it.

• Add the necessary instance variables to represent the quiz data objects, as created in Phase I.

• Implement a handler for the start a quiz button. It should open a new modal window. You should
study carefully a multi-window JavaFX example in my directory on odin:
/home/myid/kkochut/cs1302/NewWindow

There are 2 examples, one without a delay and one with a delay of 3 seconds before closing a child
window. However, you do not have to implement a delay in your quiz game (project 5 description
discusses an alternative way to display the correct/incorrect result after the player answers a
question).

In the new window, include suitable controls, at least a Text for the question text and a group of 3
RadioButtons for the answers. A Submit button should be there, as well.

Think how to show the correct/incorrect response after the player’s answer and implement it.
Implement the Submit button handler to score the answer, update the total quiz score, and update the
window with the new question and answer choices. In this handler, you should display the
correct/incorrect response, with a delay or without. If you don’t implement a delay, the
correct/incorrect response info should appear on the next window update.
If you want to change a collection/layout of controls within an existing scene object, you can use
the method scene.setRoot(newLayoutRoot) and provide a new layout, e.g., using a
different VBox, HBox or FlowPane containing a different arrangement of controls. In this way, you
could reuse the same Scene and Stage objects that you would create to show individual quiz
questions (where the controls would include the Text or Label of the question, a group of 3
RadioButtons, and a Submit button) by a layout suitable to show the overall quiz result (with a Text
showing the final quiz score and a Close button).

If the last question was answered, display the last answer correct/incorrect info, and update the final
quiz score. It should be displayed to the player, of course.

Finally, you should add the result to QuizResult and write this class object to disk.

At this point, you may want to add the code to read this object from disk when the game program
starts up.

• Implement a handler for the past quiz results button. It should open a new modal window. Again,
look at the example on odin to see how to implement a scrollable content in JavaFX. The scene for
this window should simply display the content of the restored QuizResult object.

Add the Close button and implement its handler, as illustrated in the example on odin.

• Implement a handler for the help button. It should open a new modal window. Again, look at the
example on odin to see how to implement a scrollable content in JavaFX. The scene for this
window should simply display some help information about your Geography Quiz game.

Add the Close button and implement its handler, as illustrated in the example on odin.

