
	
	
	

CIS*2500 W20 - Assignment 4 
Linked Lists, Recursion and ADTs 

Question	1a:	Advanced	Linked	Lists	 	
	

	 [bonus	10%	for	Q1	–	doubly	linked	lists]	
typedef struct NODE { typedef struct NODE { 
    value_t value;     value_t value; 
    key_t key;      key_t key; 
    struct NODE * next;     struct NODE * next; 
    struct NODE * sort;     struct NODE * sort; 
} Node;      struct NODE * prev; 
     struct NODE * prev_sorted; 
 } Node; 

In	this	linked	list:	
• The	datatype	for	the	value	being	stored	is	called	value_t	
• The	datatype	for	the	key	being	stored	is	called	key_t	
• As	in	lab	4,	next	links	to	the	node	in	the	order	it	was	added	to	the	list	(either	at	the	head	or	the	tail)	

o This	will	be	referred	to	as	insertion	order		
• Similar	to	lab	4,	sort	links	to	the	node	where	the	key	is	greater	or	equal	to	its	key		

o i.e.	the	list	is	kept	in	ascending	order	by	key	
o This	will	be	referred	to	as	key	sort	order		
o Note:	unlike	lab	4,	there	is	only	one	key	

	
	
	

Create	a	Sorted	List	abstract	data	type		
• Has	two	heads	(head	for	insertion	order,	head_sort	for	key	sort	order)	
• Has	two	tails	(tail	for	insertion	order,	tail_sort	for	key	sort	order)	
• If	you	are	not	using	the	bonus	Node	struct	

o Has	two	“previous	tail”	(the	node	pointing	to	the	tail	node)	links			
prev_tail		and		prev_tail_sorted	

• Has	an	int	field	called	size	that	stored	the	node	count	(the	number	of	elements	in	the	list)	
• The	datatype	should	be	called	Sorted_List	

	 Note:		 technically	you	will	be	implementing	only	be	a	subset	of	the	Sorted	List	ADT		
	 	 as	you	will	not	be	asked	to	implement	all	functions	of	the	full	ADT	

	 	

or	

The program should NOT have any errors and memory leaks!

Some useful command:
To check error: gcc -Wall
To check memory leak: valgrind

Use this one if you can



Functions	to	be	implemented		
All	functions,	except	where	noted,	return	SUCCESS	if	the	function	can	complete	or	FAIL	if	not	

• int size (Sorted_List *) 	

• int push ( Sorted_List *, value_t , key_t )	
o add	the	node	to	the	head	of	the	list	
o the	node	must	also	be	inserted	in	ascending	sort	order	by	key,	using	the	sort	link	

• int append ( Sorted_List * , value_t , key_t )	
o similar	to	push,	except	the	node	gets	added	to	tail	

• int remove_first ( Sorted_List * , value_t * , key_t  *)	
o removes	the	node	from	the	head	of	the	list	
o returns	the	value	and	key	of	the	removed	node	(and	frees	the	node)	
o remember	to	update	the	sort	order	links	

§ if	not	using	doubly	linked	lists,	you	will	need	to	find		
the	previous	sorted	node	to	change	its	sort	order	link	

• int remove_last ( Sorted_List * , value_t * , key_t * )	
o similar	to	remove_first,	except	it	removes	the	node	from	the	tail		

• int remove_smallest_key ( Sorted_List * , value_t * , key_t * )	
o removes	the	node	with	the	smallest	key	
o returns	the	value	and	key	of	the	removed	node	(and	frees	the	node)	
o remember	to	update	the	insertion	order	links	

§ if	not	using	doubly	linked	lists,	you	will	need	to	find		
the	previous	insert	order	node	to	change	its	insertion	order	link	

• int remove_largest_key ( Sorted_List * , value_t * , key_t * )	
o similar	to	remove_smallest_key,	except	it	removes	the	node	with	the	largest	key		

• void empty_list ( Sorted_List *)	
o empties	the	contents	of	the	list	

• void destroy_list ( Sorted_List *)	
o empties	the	contents	of	the	list,	as	well	as	freeing	the	list	itself	

	
	 	



To	test	the	Sorted	List	ADT	
Write	two	programs	called			a4q1a_char.c			and			a4q1a_int.c	

• Data types used	
o a4q1a_int.c				

§ has	its		value_t		datatype	set	equal	to		int		
§ has	it		key_t		datatype	set	equal	to		double	

o a4q1a_char.c				
§ has	its		value_t  datatype	set	equal	to	char[80]		

• i.e.	it	can	take	strings	up	to	79	characters	in	length	
§ has	its		key_t		datatype	set	equal	to		int	

• its	value	is	set	equal	to	the	length	of	the	string	
• Both	programs	read	in	a	text	file	that	contains	a	series	of	commands,	one	per	line		

(i.e	each	ending	with	a	newline)	
o The	name	of	the	text	file	should	be	entered	as	a	command	line	argument	

§ If	there	is	no	file	name,	read	from	stdin		
• this	can	use	IO	redirect,	i.e.	 a4q1a_int < filename.txt	

§ If	using	keyboard	input,	exit	using	^d	
• All	commands	are	echoed	to	stdout,	followed	by	a	colon	:,		

o After	that	the	results	of	the	command	follows,		
§ usually	on	the	same	line	following			11	–	strlen(cmd	name)			spaces			

or	on	the	next	line	when	noted	

	 Note:		 Silent	commands	do	not	have	the	colon	:	after	the	command,		
	 	 but	rather	after	the	command	name	

• Remember	to	free	the	sorted	list	at	the	end	of	the	program	(use	destroy_list)		
	

	 General	Note:	The	two	programs	should	be	almost	identical,	with	the	following	differences	
o The	file	input	will	be	slightly	different	depending	on	the	data	type	and	nature	of	the	input	data	
o Your	will	have	to	write	similar,	but	not	identical void print_list_all ( Sorted_List * )		

and void print_list_sort ( Sorted_List * )	functions		
§ These	functions	print	out	the	lists	according	to	their	respective	sort	orders		
§ See	the	report	commands	section	below	for	details		

(the	print_all	and	print_sort	commands)		
o You	will	have	to	have	your	make	file	recompile	all	files	that	mention	or	use	value_t	and	key_t	

variables	or	Sort_List	structs	when	compiling	the	two	programs	
§ To	do	this	you	will	need	to	use	condition	compilation	(see	Week1	lecture	notes)	
§ In	specific,	use	#ifdef	CHAR	to	compile	using	the	char[80]	typedef	definition		of	value_t		

and	#ifdef	INT	to	compile	using	the	int	typedef	definition	of	value_t	
§ E.g.	if	you	stored	all	your	Sort_List	ADT	functions	in	a	single	file	called	sort_list.c		

Then	for	a4q1a_char.c	you	could	have	in	your	make	file	a	command	like	
	

gcc		-Wall	-ansi	-DCHAR	-c	sort_list.c		
	



	 	
List	of	Commands		
Silent	Commands	(modifies	the	list	but	does	not	print	anything	other	than	the	command	itself)	
• a	=	append	 	

o a4q1a_int.c				
§ input	line:	 a   key value	
§ example	

• input	
 a   3.27   1427  
 a   0.94   984 
 a   7.21   346	

• output (11	–	1	spaces	after	the	colon) 
 a:          3.27  1427  
 a:          0.94  984 
 a:          7.21  346	

o a4q1a_char.c				
§ input	line:	 a   value	
§ example	

• input		
 a   The sun did not shine.  
 a   It was too wet to play. 
 a   So we sat in the house 
 a   All that cold, cold, wet day.	

	 Note:	skip	the	white	space	between	the	command	‘a’	and	the	input	string	

• The	key	values	for	the	above	are	22,	23,	22,	29	
• output			(11	–	1	spaces	after	the	colon)	

	 a:          The sun did not shine. 
 a:          It was too wet to play. 
 a:          So we sat in the house 
 a:          All that cold, cold, wet day.	

• p	=	push	
o same	as	a	except	it	pushes	instead	of	appends	the	key/value	pair	onto	the	list	

	 	
Verbose	Commands	(modifies	the	list	and	then	reports	to	stdout)	
• rem_first	=	remove	first	node	of	the	list	by	insertion	order	

o also	prints	the	element’s	key-value	pair,		
with	two	spaces	between	the	key	and	the	value	

o Example	for	a4q1a_int.c	assuming	the	first	list	element	key	is	2.465	and	value	is	212	
rem_first:  2.465  212		

o Note	the	two	spaces	after	rem_first:		
§ “rem_first”	is	9	characters	in	length,		

so	the	number	of	spaces	following	should	be		11	–	9	=	2	
• rem_last	=	remove	last	node	of	the	list	by	insertion	order	and	print	the	element’s	key-value	pair	
• rem_small	=	remove	the	node	with	the	smallest	key	and	print	the	element’s	key-value	pair	
• rem_large	=	remove	the	node	with	the	largest	key	and	print	the	element’s	key-value	pair	
• empty	=	empty	the	list	

o the	output	of	this	command	should	be	
empty:      size = 0	  



Report	Commands	(prints	information,	but	does	not	modify	the	list)	
• size	=	size	of	sorted	linked	list	

o if	there	are	21	nodes	in	the	list	it	prints	
size:							List	size	=	21		

• print_all =	print	list	in	insertion	order	
o The	type	of	order	is	printed	on	the	same	line	as	the	command	
o The	list	starts	printing	on	the	next	line,	one	element	per	line	
o Each	element	is	prefaced	by	5	spaces,	then	the	key,	then	2	spaces,	then	the	value	
o Example	using	the	input	from	the	append	examples	

§ a4q1a_int.c	
 print_all:  Insertion Order 
      3.27  1427  
      0.94  984 
      7.21  346	

§ a4q1a_char.c		
 print_all:  Insertion Order			

      22  The sun did not shine. 
      23  It was too wet to play. 
      22  So we sat in the house 
      29  All that cold, cold, wet day. 
	

• print_sort	=	print	list	in	key	sort	order	
o The	output	is	the	same	as	with	print_all	except	the	order	of	the	lines	are	in	key	sort	order	and	

the	command	line	will	read	Key	Sort	Order	
o Example	using	the	input	from	the	append	examples	

§ a4q1a_int.c	
 print_all:  Key Sort Order 
      0.94  984 
      3.27  1427  
      7.21  346	

§ a4q1a_char.c		
 print_all:  Key Sort Order			

      22  The sun did not shine. 
      22  So we sat in the house 
      23  It was too wet to play. 
      29  All that cold, cold, wet day. 
	 	
	
	

The	assignment	continues	with	Question	1b	Function	Pointers		
to	be	released	by	March	26	

the relevant lecture notes for Q1b, presented the last week  
of face-to-face classes, have now been posted 

	 	



Question	1b:	List	ADT	and	Function	Pointers	
• Implement	List_Sort	*	map	(	List_Sort	*,	function	pointer	)	

o map	only	applies	to	the	values,	not	the	sort	keys	
o however,	make	sure	that	the	new	list	produced	has	the	same	key	values		

and	links	(both	next	and	sort)	

• Implement	void	with	(	List_Sort	*,	function	pointer	,	int	order)	
o however,	make	sure	that	the	new	list	produced	has	the	same	key	values		

and	links	(both	next	and	sort)	

• Implement	value_t	reduce	(	List_Sort	*,	reduction	function	pointer,	int	order	)	
o Like	map,	reduce	only	applies	to	values,	not	keys	
o Unlike	map	reduce	takes	an	extra	final	parameter:	int order	

§ order	can	be	either	SORT_ORDER	or	INSERT_ORDER	
§ you	may	decide	what	values	these	will	take	as	long	as	they	are	int	values		

and	defined	in	the	appropriate	.h	file	
§ while	the	order	the	reduction	occurs	in	does	not	matter	for	sum	or	prod,	it	could	with	

other	reduction	functions	

• Implement	value_t	map_reduce	(	List_Sort	*list,	map	fn	pointer,	reduce	fn	pointer,	int	order	)	
o First	applies	map	then	reduce	
o Unlike	map	all	of	these	functions	take	an	extra	final	parameter:	int order	

§ order	can	be	either	SORT_ORDER	or	INSERT_ORDER	
§ you	may	decide	what	values	these	will	take	as	long	as	they	are	int	values	and	defined	in	

the	appropriate	.h	file	

• Implement	value_t	*	map_2_array	(List_Sort	*list1,	List_Sort	*list2,	function	pointer,	int	order)	
o map_2_array	takes	two	lists	and	applies	a	function	(passed	in	as	a	function	pointer)	

that	takes	two	values	(from	the	nodes	at	the	same	position	in	their	respective	lists)		
and	returns	a	value	of	type	value_t	

o The	values	are	collected	in	an	array	with	element	type	value_t	in	the	same	order	as	traversed	
by	the	linked	list,	depending	on	whether	SORT_ORDER	or	INSERT_ORDER	was	choisen	

o the	function	then	returns	the	above	array	
o note:	 unlike	map,	order	of	traversal	matters	with	map_2_array		

	 as	different	nodes	will	be	paired	together	depending	on	the	order	

• Implement	value_t	map_2_reduce(List_Sort	*list1,	List_Sort*	list2,	map	fn	ptr,	reduce	fn	ptr,	int	order)	
o First	applies	map	then	reduce	

	
	
	 	



• Use	either	reduce	and/or	map_reduce	to	implement		
o void	print_list_all	(	Sorted_List	*	)	

§ Prints	the	list	in	insertion	order		
• the	first	line	should	read	“Insertion	Order”	
• then	the	list	is	printed	out,	one	node	per	line	as	(key, value)	

o void	print_list_sorted	(	Sorted_List	*	)	
§ Prints	the	list	in	key	sort	order		

• the	first	line	should	read	“Key	Sort	Order”	
• the	rest	should	print	the	same	is	in	print_list_all,	except	in	key	sort	order	

o value_t	sum	(	Sorted_List	*	,	value_t	init	)	
§ see	lecture	notes	

o int	count	(	Sorted_List	*	,		function	pointer	)	
§ Takes	a	list	and	function	pointer	
§ the	function	pointer	should	be	passed	a	function	that	takes	a	single	parameter		

of	type	VALUE	and	produces	either	TRUE	or	FALSE	
§ Returns	the	count	of	all	of	the	list	values	that	returned	TRUE	

	
	 	



Question	2:	Recursion	
• Implement	the	following	functions	recursively	

o Count	down	from	n	to	0	
o Count	up	from	0	to	2n	by	2	
o nth,	nth_sorted	
o [bonus]	remove_nth,	remove_nth_sorted	

	
• Greatest	Common	Divisor		

o Read	up	on	the	Euclidean	Algorithm	in	Wikipedia	
§ First	Section:	https://en.wikipedia.org/wiki/Euclidean_algorithm		
§ Procedure:	https://en.wikipedia.org/wiki/Euclidean_algorithm#Procedure		
§ Example:	https://en.wikipedia.org/wiki/Euclidean_algorithm#Worked_example		
§ Using	mod:	https://en.wikipedia.org/wiki/Euclidean_algorithm#Euclidean_division		
§ Implementations:	https://en.wikipedia.org/wiki/Euclidean_algorithm#Implementations		

o Use	the	final	implementation,	which	is	recursive	and	implement	it	in	C	using	long	integer	
parameters	i.e.	long	gcd(long,	long)	

o The	Wikipedia	recursive	implementation	(and	so	your	implementation)	is	naturally	in	a	“tail	
recursive”	form	

§ explain	why	it	is	tail	recursive	in	the	readme	
§ make	sure	your	make	uses	the	appropriate	gcc	flag	to	run	tail	recursive	code	efficiently	

	
	

Question	Fraction	ADT	
	
typedef struct { 
    long num; 
    unsigned long denom; 
} Fraction; 
	

• Implement	int	fraction(Fraction	*	fract,	int	num,	int	denom)	
o Sets	the	numerator	and	denominator	in	the	Fraction	structure	
o Only	the	numerator	can	be	negative	

§ If	the	denom	parameter	is	negative,	negate	the	num	parameter		
and	store	denom	in	the	struct	as	a	positive	value	

o The	denom	parameter	cannot	be	0	
§ If	it	is	zero	do	not	set	the	num	and	denom	in	fract		

and	return	FALSE	(where	FALSE	is	a	#define	set	to	0)	
o If	the	num	and	denom	can	be	successfully	set,	return	TRUE	

(where	TRUE	is	a	#define	set	to	1)	
• Implement	print_fract(Fraction	*	fract)	

o If	fract	has	a	numerator	of	3	and	a	denominator	of	4	it	should	print	
“3/4”	to	stdout	

o If	fract	has	a	numerator	of	4	and	a	denominator	of	3	it	should	print	
“1	1/3”	to	stdout	

o If	fract	has	a	numerator	of	4	and	a	denominator	of	1	it	should	print	
“4”	to	stdout	

• Implement	simplify	fraction	using	GCD	



o For	a	/	b		
§ find	g	=	gcd(a,	b)	
§ the	simplified	form	of		a	/	b	is		

(a/g)	/	(b/g)	
o e.g.	6/12	

§ gcd(9,	12)	=	3	
§ (9/3)	/	(12/3)		=	3	/	4	

• Implement	int	add_fract(Fraction	*	result,	Fraction	*	x,	Fraction	*	y)		
o To	compute	add_fract(a/b,	c/d)	use	the	following	formula	

(a	*	d	+	b	*	c)	/	(b	*	d)	simplified	
o Check	to	make	sure	that	the	result	doesn’t	overflow/underflow	

(i.e	the	addition	and/or	multiplication	produces	a	result	greater	than	a	long	can	represent)	
§ If	it	overflows	return	FALSE	and	do	not	update	fract	
§ Otherwise	return	TRUE	

• Implement	mult_	fract	
o To	compute	mult_fract(a/b,	c/d)	use	the	following	formula	

(a	*	c)	/	(b	*	d)	simplified	
o Check	to	make	sure	that	the	result	doesn’t	overflow/underflow	

(i.e	the	addition	and/or	multiplication	produces	a	result	greater	than	a	long	can	represent)	
§ If	it	overflows	return	FALSE	and	do	not	update	fract	
§ Otherwise	return	TRUE	

• Also	implement	sub_	fract	(which	subtracts	fractions)	and	div_	fract	(which	divides	fractions)		
in	a	similar	way	

• Implement	void	rand_fract(Fraction	*	x,	int	a,	int	b),	which	should	store	a	Fraction	with	
o Numerator	randomly	chosen	between	[-a,	a]	
o Denominator	randomly	chosen	between	[1,	b]	

• Create	a	function	called	rfract(int	n,	int	a,	int	b)	that	produces	an	array	that	stores	n	random	Fraction	
values		created	by	rand_fraction(a,b)	

• Print	the	fractions	in	sorted	order	



Question	1b:	List	ADT	and	Function	Pointers	

Using	the	same	data	type	Sorted_List	as	in	q1a,	

Implement	
• Sorted_List * map ( Sorted_List *, fn ptr)	

o map	only	applies	to	the	values,	not	the	sort	keys	
o however,	make	sure	that	the	new	list	produced	has	the	same	key	values		

and	links	(both	next	and	sort)	

• value_t reduce ( Sorted_List *, reduce fn ptr, value_t init, int order )	
o like	map,	reduce	only	applies	to	values,	not	keys	
o however,	reduce	also	takes	an	extra	parameter,	int order	

§ order	is	either	INSERTED_ORDER	or	SORTED_ORDER	and	determines	which	set	of	links	
to	follow	while	reducing:	next	or	sort	respectively	

§ note:		while	the	order	of	the	reduction	does	not	matter	when	using	add	or	mult	
	 as	the	reducing	function,	it	could	with	other	reduction	functions	

• value_t map_reduce (Sorted_List *list, map fn ptr, reduce fn ptr, value_t init, int order )	
o Conceptually,	you	are	first	applying	map,	and	then	reduce	
o However,	both	map_fn	and	reduce_fn	should	be	applied	together,	node-by-node	

§ i.e.	do	not	create	a	full	map	list	and	then	apply	reduce	to	it	
§ instead	apply	the	map	function	to	list’s	node,		

then	store	the	result	in	the	reduce	accumulator		
o This	allows	you	to	avoid	creating	and	freeing	the	memory	that	would	be	used	if	an	intermediate	

map	list	were	to	have	been	created	and	only	then	reduced	

• value_t * map_2_array ( Sorted_List *list1, List_Sort *list2, fn ptr, int order) 
o map_2_array	takes	two	lists	and	applies	a	function,	passed	in	as	a	function	pointer,	

that	takes	two	values	(from	the	nodes	at	the	same	position	in	their	respective	lists)		
and	returns	a	value	of	type	value_t	

o The	values	are	collected	in	an	array	with	element	type	value_t	in	the	same	order	as	traversed	
along	the	links	chosen	(i.e.	next	if	INSERTED_ORDER	was	chosen	or	sort	if	SORTED_ORDER	was)	

o the	function	then	returns	the	above	array	
note:	 unlike	map,	order	of	traversal	matters	with	map_2_array		
	 as	different	nodes	will	be	paired	together	depending	on	the	order	

• value_t map_2_reduce( Sorted_List *list1, List_Sort *list2, map fptr, reduce fptr, int order)	
o Similar	to	map_reduce,		
o However,	node	by	node,	it	should		

§ apply	the	map	function	to	the	value	of	list1’s	node	as	its	first	argument		
and	the	value	of	list2’s	node	as	its	second	argument		

§ then	store	the	result	in	reduce’s	accumulator	
	 	



	
Figure	1:		Example	of	map_2array	and	map_2_reduce	using	INSERTED_ORDER	
	
	
	
	
	

	

Figure	2:		Example	of	map_2array	and	map_2_reduce	using	SORTED_ORDER	
	 	

list2 NULL7 2 4

list1 NULL2 5 1

array 14 10 4

array = map_2_array(list1, list2, mult, INSERTED_ORDER)

ans = map_2_reduce(list1, list2, mult, add, 0, INSERTED_ORDER)
ans == 28 TRUE

where add and mult are functions that take two int arguments
as seen in the reduce example in the lecture notes

Below list1 and list2 only depict the value and next fields

array 2 8 35

array = map_2_array(list1, list2, mult, SORTED_ORDER)

ans = map_2_reduce(list1, list2, mult, add, 0, SORTED_ORDER)
ans == 45 TRUE

list2 NULL2 4 7

list1 NULL1 2 5

list1 and list2 are the same as before,  
but now depict the key and sort fields where key was set equal to value

list2 NULL7 2 4

list1 NULL2 5 1

array 14 10 4

array = map_2_array(list1, list2, mult, INSERTED_ORDER)

ans = map_2_reduce(list1, list2, mult, add, 0, INSERTED_ORDER)
ans == 28 TRUE

where add and mult are functions that take two int arguments
as seen in the reduce example in the lecture notes

Below list1 and list2 only depict the value and next fields

array 2 8 35

array = map_2_array(list1, list2, mult, SORTED_ORDER)

ans = map_2_reduce(list1, list2, mult, add, 0, SORTED_ORDER)
ans == 45 TRUE

list2 NULL2 4 7

list1 NULL1 2 5

list1 and list2 are the same as before,  
but now depict the key and sort fields where key was set equal to value



To	test	within,	map,	reduce,	etc.		
Write	a	program	called			a4q1b.c	

• Data types used	
o value_t		datatype	is	equal	to		int		
o key_t		datatype	is	equal	to		double	
o same as a4q1a_int.c, so compile files containing Sorted_List functions using -DINT	

• The	program	reads	in	a	text	file	that	contains	a	series	of	commands,	one	per	line,		
with	the	name	of	the	text	file	entered	as	a	command	line	argument	

o Base	this	code	on	the	code	you	used	in	q1a	to	implement	command	entries	from	a	file		
o However,	the	code	will	need	to	be	extended	to	allow	for	new	commands	that	are	detailed	below	

• Again,	all	commands	are	echoed	to	stdout,	followed	by	a	colon	:	in	the	same	format	as	used	with	q1		
• Include	a	void	print_array(value_t	*,	int	size)		

o this	prints	out	values	in	the	array	produced	by	map_2_array	
o the	values	in	the	array	should	be	printed	one	per	line,	with	five	spaces	preceding	the	value			

• Make	sure	you	have	declared	an	array	that	can	hold	up	to	10	Sorted_List	pointers		
o Do	not	confuse	this	with	the	array	produced	by	map_2_array,	this	array	holds	Sorted_List	

pointers	not	value_t	values.	
• Remember	to	free	all	sorted	lists	and	nodes	(and	arrays	that	may	contain	them)		

at	the	end	of	the	program	
	 	
	 	



To	implement	the	new	commands,	write	the	following	functions		
use	either	map,	reduce,	map_reduce,	map_2_array,	or	map_2_reduce	when	implementing		

	

• sum	
o sums	the	values	of	a	list	and	returns	the	sum	
o see	lecture	notes	

• diff	
o takes	two	sorted	lists	of	the	same	size		

§ returns	NULL	if	the	sizes	are	different	
o produces	an	array	whose	values	are	the	differences	of	the	values	in	the	sorted	lists	args	
o you	should	also	take	a	third	argument	that	can	be	set	to	SORTED_ORDER	or	INSERTED_ORDER	

in	order	to	follow	the	appropriate	links	
• square		

o takes	a	sorted	list	and	produces	a	new	sorted	list	whose	value	at	a	node		
equals	the	original	value	(not	key)	squared	

o the	keys	and	links	should	be	copied	unchanged	
• sum_of_sq_diff	

o takes	two	sorted	lists	of	the	same	size		
§ returns	NULL	if	the	sizes	are	different	

o produces	a	value	computed	as	follows:		
§ at	each	node	position,	take	the	difference	between	the	values	
§ square	the	resulting	difference	
§ sum	across	all	nodes	into	a	single	result	

o you	should	also	take	a	third	argument	that	can	be	set	to	SORTED_ORDER	or	INSERTED_ORDER	
in	order	to	follow	the	appropriate	links	

	
	

note:	 	these	should	be	1	or	2	line	programs	that	take	function	pointers		
	 to	functions	that	are	also	only	a	few	lines	long	

	 	



List	of	Commands		
All	commands	from	q1a	should	be	made	available	as	well	as	the	following	
Silent	Commands	(modifies	the	list	but	does	not	print	anything	other	than	the	command	itself)	
• a|n		

o append	to	the	nth	index	of	the	array	of	sorted	list	pointers 
o same as the a command but appends into relevant sorted list in the array of sorted lists   

• p|n	
o same	as	a|n	except	it	pushes	instead	of	appends	the	key/value	pair	onto	the	appropriate	list	

	 	
Verbose	Commands	(modifies	the	list	and	then	reports	to	stdout)	
For	all	examples,	the	sorted	list	at	index	3	holds	the	values	<1,	2,	3>	where	the	key	equals	the	value	
	 the	sorted	list	at	index	5	holds	the	values	<3,	1,	7>	where	the	key	equals	the	value	
• sum|n	

o sums	the	values	of	the	sorted	list	at	index	n		
o For	the	command	“sum|3		SORTED_ORDER”,	the	output	should	be	

sum:        list = 3, result = 6 

• square|n	
o For	the	command	“square|3”,	the	output	should	be	

square:     list = 3 
     1 
     4 
     9 

• diff|n:m  order		
o For	the	command	“diff|5:3		INSERTED_ORDER”,	the	output	should	be	

diff:       list1 = 5, list2 = 3 
     2 
     -1 
     4 

• sum_sq_d|n:m  order	
o For	the	command	“sum_sq_d	|5:3		INSERTED_ORDER”,	the	output	should	be	

sum_sq_d:   list = 5, list2 = 3, result = 21 
	
Report	Commands	(prints	information,	but	does	not	modify	the	list) 

• print_all|n	
o print	the	sorted	list	at	index	n	in	insertion	order		
o Using	the	input	from	the	append	examples	in	q1a	that	had	been	stored	at	index	2	

For	the	command	“print_all|2”,	the	output	should	be	
 print_all:  Insertion Order 
      3.27  1427  
      0.94  984 
      7.21  346	

• print_sort|n	
o print	the	sorted	list	at	index	n	in	key	sort	order	

The	assignment	continues	with	Question	2:	Recursion		
to	be	released	early	next	week	

	 	




