
Assignment 4: Chat Server and Client

Introduction
The goal of this assignment is to extend the chat server and client from Tutorial 11 with new features. The most exciting feature will be support for
emotes. This assignment also asks you to demonstrate a number of the learning outcomes from earlier in the course: ability to learn about systems
utilities independently, use of file operations, use of fork, etc. That is, this assignment is the capstone of this course.

The only new starter code provided for this assignment is: (1) A new socket.h with updates to the macro definitions. (2) A new chat_server.c that turns
off SIGPIPE (the rest of the file is identical to the Tutorial 11 starter code). Aside from that, your solution to Tutorial 11 will be your starter code for
Assignment 4.

Reliability and Security
The remarks mentioned in Tutorial 11 under the "A Note on Software Quality, Reliability, and Security" heading apply to this assignment as well. In
summary, both the client and server must validate all protocol messages received. If your client encounters an invalid protocol message, it should
terminate. If your server encounters an invalid protocol message from a client, it should disconnect that client and continue serving the other clients.

Recommendation: Testing Client from Another Computer
We encourage you (but we are not marking this for completion) to implement optional command-line arguments in the client to allow you to specify a
hostname or IP address to connect to. If no command-line arguments are provided, your program should fall back to using the default host (localhost, or
127.0.0.1) and port (specified in the Makefile). You should be able to implement this with just a few lines of code—see randclient.c to see how it is done
there (word of warning, though: randclient.c exits if no command-line arguments are provided, instead of falling back to a default hostname/port.

New Requirements for your Chat Program
This assignment adds a number of features to your Tutorial 11: the addition of an admin role, restrictions on usernames, the addition of emotes to the
chat, and an updated protocol to enable these new features.

An Updated Chat Protocol
To support the new features, we will need to update our chat protocol with a new message format. All protocol messages sent by your client must follow
the format:

PROTO_MSG_CODE USER_MESSAGE CRLF

PROTO_MSG_CODE is a single character that serves to identify the type of message that the client is sending:

Message code 0 (the ASCII character 0) indicates a "kick" command from the chat server administrator. In this case, USER_MESSAGE is the user name
of the client that should be kicked from the server.
Message code 1 (the ASCII character 1) indicates that USER_MESSAGE is a text message consisting of a sequence of 0 to MAX_USR_MSG printable ASCII
characters. This is followed by a CRLF sequence. If the client is sending their username upon connecting to the server, the message code is still 1
but USER_MESSAGE must be a user name consisting of 0 to MAX_NAME characters. This functionality should have been completed in the tutorials.
Message code 2 (the ASCII character 2) indicates that USER_MESSAGE is an emote, consisting of a sequence of up to MAX_IMG_LEN bytes that compose
a Base64-encoded JPEG file (explained later). As required by the protocol, these bytes are followed by a CRLF sequence.

All protocol messages sent by your server be in the format:

PROTO_MSG_CODE USER_NAME SPACE USER_MESSAGE CRLF

All of the fields in this format have already been described either above or in the Tutorial 11 instructions. The only change from Tutorial 11 to Assignment 4
is the addition of the PROTO_MSG_CODE field. Note that there is no space between PROTO_MSG_CODE and USER_NAME.

Due: 10 p.m. on Wednesday, April 1, 2020 (submit to your MarkUs git repository). Since this tutorial will be marked by automated scripts, please
ensure that you follow the submission instructions exactly, including the required file names and directory structure.

Admin
One user connected to the server will be designated the admin, and that user has the ability to kick (disconnect) any user from the server.

The admin is always the user that has been connected for the longest period of time. As a result, the first client to connect to the server is the first admin.
If the first client disconnects from the server at some point, the next most "senior" user becomes the admin (i.e., the next user that has been around the
longest). This method is simpler than it sounds. (Hint: You don't need to keep track of time.)

To kick a user, the admin user can type the following command into the client: .k username . In accordance with the protocol message format, the
resulting protocol message that the client sends to the server will be 0username\r\n. The server should ignore any kick commands from non-admin users.
(To reiterate: A non-admin issuing a kick should not be considered an invalid message; it should just be ignored.)

Duplicate Names
In the assignment 4 chat application, no two users can share the same user name, and they may not pick the all-caps username SERVER as their
username. If a new user attempts to log in with an invalid username (e.g., SERVER, an oversized username, or one that is already taken), the server should
respond with the ASCII sequence 1SERVER Username invalid or already taken.\r\n and disconnect the client.

Base64 Encoding of Emotes
Base64 is a subset of ASCII. Your chat client will need to make use of the UNIX base64 utility to encode and decode data to and from Base64. As
explained in man base64 , this utility follows the RFC 4648 variant of Base64, which uses the characters A-Z, a-z, 0-9, -, and _. If necessary, = is used at
the end as a padding character to ensure that the total number of characters in the encoded data is always a multiple of 4.

Base64 is very popular across many applications, which is why you can find many online tools that can encode/decode Base64. Its appeal is that it allows
you to take any data and convert it into a form that can be printed as human-readable text, without any unprintable or control characters. E-mail
attachments are sent in Base64-encoded form, for example. It is also a popular way of storing other data such as cryptographic keys (that "trick" works
for any Github account set up with SSH public keys), since it makes it easier to copy them around or print them out for backup purposes.

The disadvantage of Base64 is that any encoded data will be about 37% larger than the original unencoded data length. The reason why is fairly
straightforward: Since the Base64 encoding process restricts the value of each character to one of 64 printable characters out of the 256 possible
values that an 8-bit character can normally hold, a greater number of characters are required to represent the same data. If that confuses you, think
about it this way: Why is it that the number 255 can be printed with 3 characters in decimal representation, but its binary equivalent (11111111) requires 8
characters to print, even though both the decimal and binary values represent the exact same number?

For our chat protocol, the appeal of using Base64 is that the encoded image will never inadvertently contain any control characters, such as a CRLF
sequence (i.e., 0x0D0A in hexadecimal, or \r\n when represented as control characters) that your server or client would interpret as a protocol message
terminator. In contrast, the original JPEG file may inadvertently contain a CRLF sequence or other control characters such as a 0x00 byte (which might be
interpreted as a string terminator by some string-handling functions in C).

Emote Commands in Chat
See the screenshot below for what your final result should look like.

https://tools.ietf.org/html/rfc4648%23section-5
https://www.freeformatter.com/base64-encoder.html
https://github.com/falaca.keys

The implementation requirements for sending an emote are as follows:

1. Your program should not, under any circumstances, use absolute file paths, either for opening any files or for executing any other programs. Make
use of relative file paths for accessing files in your emotes directory, and use an exec() function that respects the PATH environment variable when
calling the base64 or catimg utility.

2. When the user inputs .e EMOTE_NAME into the client, the client will encode the file EMOTE_NAME.jpg located in the emotes subdirectory of your a4
directory, as follows:
1. Your client should write the contents of EMOTE_NAME.jpg to stdin of the base64 utility, which you must execute.
2. When executing the base64 utility, use the appropriate command-line argument(s) to ensure that no newline characters are inserted into the

Base64-encoded data. By default, it wraps the data into 76-character lines, and we don't want that.
3. Your client should read the resulting Base64-encoded JPEG image from the stdout of the base64 utility.

3. If the specified jpg is not found in the emotes subdirectory, the client should print the message: "Error: Emote image not found" to stdout, not send a
message on the socket, and then continue as normal.

You must use fork(), pipe(), and dup2() to correctly complete the task above. We will not tell you the exact sequence of steps to follow, since we want
you to be able to work through that on your own.

The implementation requirements for receiving and displaying an emote are as follows:

1. You must first decode the emote using the base64 utility. Your program should use fork(), pipe(), and dup2() to write the Base64-encoded emote
to stdin of the base64 utility (which needs to be executed with the appropriate flag for decoding) and read back the original JPEG image data that it
outputs to stdout.

2. Use the catimg program to display the image on-screen. Use the flag -w80 to limit the width of the image (otherwise it will use up the whole
window). Unfortunately, catimg does not accept input on stdin. Instead, it expects to be provided with the file name of a JPEG image. However, we
don't want to write anything to disk, so we will use a named pipe. A named pipe, also called a fifo in Linux (see man 7 fifo) is very similar to a
pipe, except that it is assigned a file name and can therefore be opened by any program. Your client should create a named pipe in the same
directory as the server, called emotepipe.jpg, with read and write permissions for the owner user (refer back to file permissions from Week 1). Then,
your client should write the JPEG data to the pipe, and should execute the catimg program, passing it emotepipe.jpg as a command-line argument.
The catimg program will then open the named pipe just like it would open a regular file, and display its contents.

A few notes:

We have not covered the mkfifo() library function, either in class or in PCRS. So you will need to learn about it by reading man 3 mkfifo . Recall
from slide 7 in the Week 1 lecture slides, that one of the learning outcomes of this course is to be able to "Read the man page of an unfamiliar
system call or library function and be able to understand and use it". This is your chance to demonstrate to yourself that you have achieved this
outcome!
The precise ordering of system/library calls necessary to complete the job is for you to figure out (don't just assume that they are listed in the
correct order above).
You may run into some issues that need debugging, e.g., your program may block when attempting to read from the named pipe (this is a newly-
written assignment, so try guessing why I think that). If you encounter this issue or related issues, refer to man 3 mkfifo and man 7 fifo , and
use strace -f to trace your program's execution (make sure that you use the -f flag so that it traces any forked processes as well). This should
help you quickly identify where and why your program is stuck.
Remember that both your client and server should validate all protocol messages, and should avoid sending out any invalid messages. So for
example, your client should refuse to send emotes that (after encoding into Base64) are larger than MAX_IMG_LEN (instead, print an error message to
inform the user that the image size was too large—do not send this message to the server, though). Similarly, the server should disconnect any
misbehaving clients that do send an oversized image, and the client should disconnect from any server that sends it an oversized image. Test
thoroughly. Python is your friend.

Coding Guidelines
You are free to implement your changes as you wish, as long as you do not make any modifications to the .h files given, and perform all your changes in
the given .c files (i.e., do not submit any new .c files, since we will not look at them). Again, DO NOT modify the .h files.

DO use the macro constants defined in socket.h, and assume that we may change them to different values when testing your code.

You may find it convenient to update your read_from_socket() function so that it returns -1 if it detects an invalid protocol message in the buffer after
reading from the socket (e.g., if it sees that there is a text message longer than MAX_USR_MSG bytes).

Submitting Your Work
Verify that your chat_server.c, chat_client.c, chat_helpers.c, and socket.c source files have been added to your repository, committed, and pushed by
the deadline to get credit for the assignment.

Congratulations—you have just finished the last assignment!

Comments
Note: If the comments fail to load, try refreshing the page or logging into the discussion board through this link .

https://mcsapps.utm.utoronto.ca/forum/session/sso?return_path=https://mcs.utm.utoronto.ca/~209/assignments/a4.shtml

22 Mar

22 Mar

24 Mar

24 Mar

24h

22h

6 replies

alacafur

Reserved for future updates.

alacafur

hirschwi

Can we assume that MAX_NAME will never be so small that SERVER is no longer a valid username?

1 reply

alacafur

 hirschwi:

Can we assume that MAX_NAME will never be so small that SERVER is no longer a valid username?

Fair assumption but if possible I would avoid hard-coding that in any way - so essentially if MAX_NAME is too small your client could treat the message with
username “SERVER” as invalid, and that’s OK.

hamodata

For the set_username function I know that it says in the handout not to change the header files but I think it will be helpful if we can add an extra parameter
struct client_sock *clients to the function. That way we can do the error testing within the function, including checking if the username is not taken

1 reply

alacafur

 hamodata:

For the set_username function I know that it says in the handout not to change the header files but I think it will be helpful if we can add an extra
parameter struct client_sock *clients to the function. That way we can do the error testing within the function, including checking if the username is not
taken

I agree that it would be cleaner to pass in the extra parameter, but we’re going to have problems compiling everybody’s code if you modify the .h file.

Continue Discussion

CSC209: Software Tools and Systems Programming (Winter 2020), F. Alaca, I. Dema & A. Petersen, University of Toronto Mississauga

https://mcsapps.utm.utoronto.ca/forum/t/assignment-4-faq/5658/2
https://mcsapps.utm.utoronto.ca/forum/u/alacafur
https://mcsapps.utm.utoronto.ca/forum/t/assignment-4-faq/5658/3
https://mcsapps.utm.utoronto.ca/forum/t/assignment-4-faq/5658/5
https://mcsapps.utm.utoronto.ca/forum/u/hirschwi
https://mcsapps.utm.utoronto.ca/forum/t/assignment-4-faq/5658/6
https://mcsapps.utm.utoronto.ca/forum/u/alacafur
https://mcsapps.utm.utoronto.ca/forum/t/assignment-4-faq/5658/7
https://mcsapps.utm.utoronto.ca/forum/u/hamodata
https://mcsapps.utm.utoronto.ca/forum/t/assignment-4-faq/5658/8
https://mcsapps.utm.utoronto.ca/forum/u/alacafur
https://mcsapps.utm.utoronto.ca/forum/u/alacafur
https://mcsapps.utm.utoronto.ca/forum/t/assignment-4-faq/5658/8
https://mcsapps.utm.utoronto.ca/forum/u/alacafur
https://mcsapps.utm.utoronto.ca/forum/u/alacafur
https://mcsapps.utm.utoronto.ca/forum/u/hirschwi
https://mcsapps.utm.utoronto.ca/forum/t/assignment-4-faq/5658/5
https://mcsapps.utm.utoronto.ca/forum/u/alacafur
https://mcsapps.utm.utoronto.ca/forum/u/hamodata
https://mcsapps.utm.utoronto.ca/forum/t/assignment-4-faq/5658/7
https://mcsapps.utm.utoronto.ca/forum/u/alacafur
https://mcs.utm.utoronto.ca/~alacafur
https://utmandrew.bitbucket.io/

