
Tutorial 11: Select

Introduction
The purpose of this exercise is to practice using select to read from multiple file descriptors. You'll be using this system call in Assignment 4.

This tutorial will serve as the second milestone for Assignment 4. Just like with last week's tutorial, you should be able to be directly re-use

your code for completing Assignment 4.

Pull the t11 starter code from your repository. Like last week, you should change the port in the Makefile before doing anything else. Take

the last four digits of your student number, and add a 5 in front. For example, if your student number is 998123456, your port would be

53456. Using this base port, you may add 1 to it as necessary in order to use new ports (for example, the fictitious student here could also

use 53457, 53458, 53459, 53460). Sometimes, when you shutdown your server (e.g., to compile and run it again), the OS will not release

the old port immediately, so you may have to cycle through ports a bit.

Text-Based Protocols
Just like human-to-human communication, which follows well-defined rules for spelling and grammar, machine-to-machine communication

must follow well-defined rules and structure. These rules are much more rigid than those for human communication—even a simple one-

character error can throw a system into disarray.

Broadly speaking, communication protocols can be either (1) text-based, where all data being communicated is encoded in human-readable

text, or (2) they can be binary protocols where the data can include non-human-readable bytes. Note that text-based protocols are

technically binary, since everything that is interpreted by a computer must be binary. However, ASCII characters are a specific set of binary

sequences that can be mapped to human-readable characters. So we read the ASCII byte 0x65 as the letter A, for example, whereas the byte

0xFF has no visual representation in ASCII.

Wikipedia has a few more things to say about the advantages and disadvantages of text-based and binary protocols.

In this course, we are only working with text-based protocols. That is one of the reasons why we never send NULL characters over a socket,

i.e., because it does not have a valid text representation. It is considered to be a "control" character that is not meant to be displayed on-

screen to users.

A Chat Protocol
For this tutorial, we are building a simple chat application starting from the code that you worked with in Tutorial 10. The goal is to allow many

clients to connect to a server and send messages to each other. Below is a sample run from a user Bob. The text that looks like this

represents characters that Bob has typed.

$ ./chat_client 
Please enter a username: bob
hey all, what's up? 
joe: hey bob, just working on this awesome CSC209 tutorial 
oh cool, me too!

Before jumping into the C programming, we must first define a simple protocol to be used by a chat server and client. Every protocol

message sent by a client must be in the following format:

USER_MESSAGE CRLF 

Where USER_MESSAGE is a message consisting of series of 0 to MAX_USER_MSG characters that a user types in from the client, and CRLF

represents a Carriage Return \r followed by a Line Feed \n character.

Every protocol message sent by a server must be in the following format:

USER_NAME SPACE USER_MESSAGE CRLF 

Due: 10 p.m. on Friday, March 27, 2020 (submit to your MarkUs git repository). Since this tutorial will be marked by automated scripts,

please ensure that you follow the submission instructions exactly, including the required file names and directory structure.

https://en.wikipedia.org/wiki/Text-based_protocol


Where USER_NAME the username of the user that sent a message. The username can be a maximum of MAX_NAME characters, and must not

contain any spaces. If you think about why, you should start to appreciate how difficult to design a good network protocol and write a

reliable implementation. The user name is followed by a single space character, which is then followed by the message and CRLF as

described previously.

Note from the sample output above that the client does not simply print the protocol messages as-is. It must parse the protocol message

and display it in a "pretty" format for the user, which in this case involves adding a colon after the user name. A different client might even

add some additional information, such as a timestamp of when the message was received (even though there is no timestamp sent in the

actual protocol message).

A Note on Software Quality, Reliability, and Security
Lack of testing is a common source of software quality, reliability, and security problems. For example, a software developer might write a

server but only test it against their own clients. Your own client might prevent the user from typing in a username that is longer than MAX_NAME

characters. But what if a user connects to your server with a buggy client, written by somebody who didn't take this course? Or what if a

rogue hacker writes their own client, designed to find and exploit vulnerabilities in your code? That is why both the server and the client must

perform their own error-checking. So even if your client does not send any invalid messages, your server should be designed to correctly

handle any situation where it encounters an invalid protocol message. In our case, the server disconnects any misbehaving clients that send

oversized messages. Likewise, a client should disconnect from a server if it receives any invalid messages (i.e., if it violates the protocol

message format specifications).

To ensure that both your client and server behave correctly when receiving invalid messages, you should prepare some of your own tests

with Python, as described in last week's tutorial.

Implementation
Take a look at the chat_client.c code. This program creates a connection to a server. Then, it prompts the user for the username, which is

read from standard input. The client does some basic error checking (such as checking the length of the user name), but you should add

some of your own based on the protocol as described above. You are asked to complete the rest of the client code. You will find four lengthy

comment blocks, labelled Step 1 through Step 4, to guide you through completing the rest of the code.

When completing the client program, take a look at how the server uses select. In particular, look at the fd_set variables it is managing and

how it checks which file descriptor is ready for reading using FD_ISSET. Your task is to update the client so it monitors just two file

descriptors: stdin and the socket that is connected to the server. Whenever a message is received on either, your program should read it

and process it.

What happens in chat_server.c? It accepts a connection from a client. Then, it waits for input from the user and then sends the message to

all other users. The server code is already written for you.

In socket.h and socket.c you will find some helper functions, macros, and structs that are used by both the server and client. Three of the

helper functions are directly from Tutorial 10, so you may copy and paste your functions here as-is. There is one additional function,

write_to_socket(), that you are asked to complete.

In chat_helpers.h you will find four helper functions that you must write in chat_helpers.c. These functions are all required by the server. Be

careful to deal correctly with your buffer sizes.

Note: DO NOT modify the .h files. Also, use the macro constants defined in socket.h, and assume that we may change them to different

values when testing your code.

Submitting Your Work
Verify that your chat_client.c chat_helpers.c, and socket.c source files have been added to your repository, committed, and pushed by

the deadline to get credit for the tutorial.

Congratulations—you have just finished the last tutorial! It's time to check out the last assignment.

Comments
Note: If the comments fail to load, try refreshing the page or logging into the discussion board through this link .

17 Mar

18 Mar

Continue Discussion 10 replies

alacafur

Reserved for updates.

wangh 212

In socket.h

https://mcsapps.utm.utoronto.ca/forum/session/sso?return_path=https://mcs.utm.utoronto.ca/~209/tutorials/t11.shtml
https://mcsapps.utm.utoronto.ca/forum/t/tutorial-11-faq-and-requirements-discussion/5553/2
https://mcsapps.utm.utoronto.ca/forum/u/alacafur
https://mcsapps.utm.utoronto.ca/forum/t/tutorial-11-faq-and-requirements-discussion/5553/5
https://mcsapps.utm.utoronto.ca/forum/u/wangh212
https://mcsapps.utm.utoronto.ca/forum/t/tutorial-11-faq-and-requirements-discussion/5553/2
https://mcsapps.utm.utoronto.ca/forum/u/alacafur
https://mcsapps.utm.utoronto.ca/forum/u/wangh212

