

 1

CS 3413
Assignment 4

Due Date: June 10th, 2020 at 8:30 am NB time (13:30 German time)

ASSIGNMENT IS TO BE COMPLETED INDIVIDUALLY BY ALL STUDENTS!

Solutions to each of the 2 problems (2 separate programs) should be submitted via
D2L. All solutions are to be written in C.

Memory is allocated for a given process when a user starts a program. The OS can give
each process a different amount of memory based on the amount requested when the
process is created. So, requests to the OS are received from applications to allocate
(creation) or to free (termination) memory. The OS services the request and gives the
new process the memory requested according to 3 popular algorithms:

• First fit: Satisfy the request from the first available free memory block that is
large enough to accommodate the request.

• Best fit: Satisfy the request from the free memory block that is large enough to
service the request and small enough that it has the smallest fragmented block.

• Worst fit: Satisfy the request from the free memory block that is large enough to
service the request and creates the largest fragmented block.

Consider the following input format:

N1 500
T7
S

N indicates the process (1) that is being created needs memory (500 bytes). The result of
this operation is either successful (indicated by a memory address returned that references
the new memory) or a failure (indicated by a NULL memory address returned). The T
operation is terminating the process (process 7 in this case) and freeing the memory that
was assigned to the process. The S operation is to stop the program and print the report.

You are to write a program (no pthreads! – YAY) that will simulate the memory
allocations/frees of the operating system. Your program will read input from stdin and
produce output on stdout. Each line will be one of the three forms above.

Your program will take the total amount of memory in your system as a command line
parameter “-s #”. You have to implement all 3 algorithms with a command line option “-
f”, “-b”, or “-w” to select which algorithm is used. Output generated is the following
(either message for each allocation line of input):

• If an allocation fails:
o Process # failed to allocate x memory

 2

• If a free fails (including the case where you receive a free request for a process
that you failed to allocate the memory):

o Process # failed to free memory
Regardless of success or failure, your program will continue to service ALL requests on
stdin. If a process fails to be allocated, then its corresponding terminate request is
ignored. At the end, you are to print a short report of the overall results:

o Total Processes created #, Total allocated memory #, Total Processes
terminated #, Total freed memory #, Final memory available #, Final
smallest and largest fragmented memory sizes

Where each # are the sums for the given operations.

Warning! Be careful … there are no limits on how many processes can be
created/terminated or how much memory you may have when you start J

2. This question consists of writing a program that translates logical to physical addresses
for a virtual address space of size 232 bytes. Your program will read from stdin a list of
logical addresses, translate each logical address to a physical address and then print the
physical address that would be accessed in memory. However, your simulation can only
have n pages loaded in memory at any given time! The goal is to simulate the steps involved
in translating logical to physical addresses.

Design your simulation with the following parameters:

• A page is 212 = 4 kilobytes. (Note, this means a frame is also 212 in size).
• Therefore, the page table has 220 entries. You can use a simple array to implement

this table.
• Your process has been allocated n frames. n is a parameter to your program on the

command line.

For the address translation you are to use the simple single level of page table mapping
(page table is 20 bits, page offset is 12 bits)

Your program should print for each logical address read:
 logical address -> physical address
It should also keep track of the number of page faults that occur and print the statistic at
the end.

Notes:

• Running your program with a sample file can be done as:
./a.out 10 < sample_logical_addr

• For this question you are to use the Least Recently Used (LRU) page replacement
policy. Since you do NOT have to worry about writing to the page you DO NOT
need to save the page when you replace it!

• Be aware of data type sizes!

Page table Page offset

