Part 1:
For this assignment, you will build some of the foundational infrastructure of a program that implements the rules of the game Breakdown. Later in the quarter, you will write a program to interactively play the game. But before we get to that task, we need to establish what the game is: what data structures represent it, what its rules are, what constitutes a victory, etc.

You will not need to become good at playing Breakdown yourself in order to complete this project; you only need to have a complete understanding of the rules, which are specified in this document.

===> Breakdown

Breakdown was created by a computer science professor at an Illinois university who turned it into a class assignment when he couldn't get any company to license the rights to it. The game is played with pieces on a board, but, unlike many board games, the board stands up vertically. There is a grid consisting of rows and columns, the cells of which can be empty, be occupied by a black piece, or be occupied by a white piece. Pieces, known as sticks, are more than one grid cell in size. Because of gravity, sticks fall down in a column to the lowest spot they can reach. Note that they do not move laterally or rotate as they fall. Because sticks are rigid, they can have an "overhang," in which part of the stick is supported by pieces below it, but another part is hanging over empty space. (Examples below will clarify.)

Players take turns, starting with black, then white, then black, and so on. The game can be played with boards of different dimensions. We will show examples in the format that your program will display boards to screen.

 0123

0
1
2
3
4

This is a board with 5 rows and 4 columns, empty at the start of the game. Empty spaces are depicted with period (.) characters.

In this particular example, we will play a game with sticks that are two grid cells long. The length of sticks is configurable from game to game, but fixed during a specific game.

Black moves first. This player drops a black stick (which will be drawn using asterisks [*]) into column 0, vertically:

 0123

0
1
2
3 *...
4 *...

Because there were no pieces occupying column 0, the black stick immediately falls to the bottom of this column.

White moves next, and drops a stick horizontally in columns 2-3. White's sticks will be depicted using lower-case letter o (as in Oscar).

 0123

0
1
2
3 *...
4 *.oo

White's stick similarly falls to the bottom row due to gravity.

Next, Black drops a stick horizontally in columns 0-1.

 0123

0
1
2 **..
3 *...
4 *.oo

Since part of this stick is propped up by the stick below it, this new stick only makes it down to row 2. This is an example of the idea of an overhang: a stick dropped horizontally remains rigid, and only falls as far as the highest point where it can rest, across all of its columns. In this particular example, it may seem plausible that this could happen, as half the stick is supported. But, to be clear, even if the stick were much longer, and only one of the columns under the stick were supporting it, it would still be able to overhang. Put another way, sticks can successfully hang, even if there is "air" underneath most of their columns, so long as at least one column is supported.

Another aspect to note is that this depiction of the board does not show the outlines of the sticks; there are two Black sticks, occupying a total of four cells. But, the fact that one is a vertical stick, with a second, horizontal one resting on it, is not explicitly acknowledged, only the overall view of which cells are occupied by Black. In fact, our program will not retain this knowledge, either. It will be sufficient simply to keep track of which cells are occupied by which color. It is only while a stick is being dropped, and gravity is being simulated, that sticks must be thought of as a single rigid unit; after the stick is placed in the appropriate location, mere cell occupancy is sufficient going forward.

White moves next, and drops a piece horizontally in columns 1-2.

 0123

0
1 .oo.
2 **..
3 *...
4 *.oo

This stick is also propped up by the presence of occupied Black cells below it, and has its own overhang. Note that the White stick is stable at this location; although it might be tempting to think that the Black stick below it, which is not fully supported , might break under the weight of the White stick above its unsupported part, this is not an aspect of the physics of the game. Sticks fall until any part of them lands on top of an occupied cell, then rest there.

You may be wondering what happens if you try to drop a stick in a column that is full to the top row, or to drop a stick vertically into a column that does not have enough room for the entire height of the stick. This is simply not allowed.

For each of the moves so far, players have taken turns dropping sticks. But, during a player's turn, they can, instead, perform a "breakdown" move. When they do, all sticks lose their rigidity and break down into individual squares the size of grid cells. These squares then fall within their columns if there was "air" beneath them.

Indeed, Black calls "breakdown" with the following result:

 0123

0
1
2 *...
3 *oo.
4 **oo

In column 1, the unsupported Black square, now no longer part of a larger, rigid stick, fell all the way to the bottom. The White square above it, also detached from the rest of a stick, falls as well, landing on top of it. In column 2, the previously-hovering White cell falls and lands on top of a White cell in the bottom row. The other two columns had no suspended cells and thus no opportunity to settle.

Note that, since a breakdown move entails the disintegration of sticks into constituent squares, this move is done without any reference to the sticks that originally caused cells to be occupied. Thus, the fact that our program will only maintain information on cell occupancy, and not stick location and orientation, will not limit our ability to simulate gravity or disintegration in any way.

Were the other player to perform a breakdown immediately after this one, it would have no effect, because all squares have already sought their lowest level. But, after a breakdown, as the game continues, more sticks will accumulate, probably forming overhangs (past breakdowns do not affect future sticks). A subsequent breakdown will cause these sticks to disintegrate, with their constituent squares falling as well.

To sum up the moves: players take alternating turns. In a turn, a given player can either drop a stick horizontally or vertically into a set of cells for which there is sufficient room; or perform a breakdown maneuver.

The objective of the game is to form a square with your occupied cells, of at least a given dimension. For instance, here is part of a larger board depicting a Black square of dimension 3:

.****
****o
o***o
..*o.

Note that there is a Black square of size 3x3 among the cells, although the boundaries of the Black region are not themselves square. It suffices to have a square of adjacent occupied cells within a larger, irregularly-shaped region.

The dimension (side length) of the square needed to win is a configurable parameter, chosen for a particular game but possibly different from game to game. The height and width of the game board, the length of a stick, and the dimension of a winning square, are all chosen independently and do not have any relationship to each other, although some combinations of these parameters do not make sense.

If, at any point, there are enough pieces, appropriately arranged, for a player to form a square and win, then that player wins, even if it is their opponent that just moved -- perhaps White performed a breakdown maneuver and Black's pieces fell into a square unexpectedly. If both players happen to form a square at the same time, then the game is a draw. (Note that this is true even if one player has a bigger square, or more squares, than the other.) The game is also a tie if all the cells are filled without any player forming a square. Furthermore, even if the board is not completely full, it is possible for the game to be a draw under the following rule: if there is no location where a player can drop a stick, trying both vertically and horizontally, and a breakdown maneuver would result in no change to the board, then the game is a draw.

The game is made interesting by the fact that the implications of breakdowns may not be obvious to a player, so their opponent may be able to strategically put sticks into positions where they will fall into a square without their opponent realizing and being able to take countermeasures.

===> Code Structure

This assignment will be the largest you have written in this course to date. As a result, we will organize the code into several files. (The notation x.[ch] indicates that there are two related files, x.c and x.h.)
· pos.[ch]: implements a struct to hold coordinates on the game board
· board.[ch]: maintains and manipulates the state of the board (information about which cells are occupied)
· logic.[ch]: implements the rules of the game
· evidence.c: provides unit tests for the functions in this assignment
· Makefile: builds an executable named evidence that runs the unit tests

Below, we provide and discuss the contents of the header files. Your task is to write the corresponding C files, and unit tests for the functions therein. To be clear, you will not have a playable version of the game upon the completion of this phase; you will only have implementations of the game mechanics, and tests thereof. A playable version will come in the next phase.

Although we give you the code for the header files, you are still expected to add comments for each of the functions, as usual.

The header files specify the bare minimum set of functions required for this assignment. Continue to identify opportunities for helper functions and for functions that would aid in debugging and testing. Judicious and thoughtful choices here will immensely improve the readability of your code and simplify your tasks.

pos:
A pos represents a location on the game board. It uses zero-based indexing; in other words, the top-left corner of the board has r=0, c=0.

The function make_pos is simply a convenience function to create a pos value.

The lines at the top and bottom of this file that begin with the # are safeguards that make sure that a header file is only included once in a given C file. Because our header files will include other header files, it can be hard to avoid duplicate inclusions: if a C file includes headers A and B, but header A itself also includes header B, this would constitute a double inclusion, and we would receive errors about duplicate definitions. To avoid needing to meticulously avoid redundant inclusions, we instead put these directives at the top and bottom of our header files in larger programs, rendering it safe to include files whenever it makes sense.

board

A cell represents the contents of a given location on the board: it is either empty, or occupied by black, or occupied by white.

There will be two possible ways of storing the board. In this phase of the project, you will only implement the first. but our data structure is already designed to accommodate the needed flexibility for the future choice.

The matrix representation uses a two-dimensional array (matrix) of the cells on the board. Each cell is an enum that holds that cell's contents.

The bits representation is dramatically more compact. In this representation, bits will be used to tightly pack information about the board contents. The full details of the coding scheme will be specified in the next phase of the project, and lectures before then will discuss the techniques needed to work with this format.

The board_new function is called to create a fully-empty board of the desired size. The particular representation (matrix or bits) is chosen at creation time and not subsequently changed. At the present moment, only the matrix representation should be implemented; raise an error if the bits representation is requested.

The board_free function fully frees the board,, including whichever internal representation it is using. For this and all the remaining functions, raise an error if given a board claiming to use the bits representation.

The board_show function prints the board to the screen, along with row and column headers. The narrative of an example game earlier in this writeup shows the required format. We will briefly discuss some subtleties here.

Notice that there are blank horizontal and vertical lines separating the row and column headers from the board itself. You can add copies of the headers below and to the right of the board if you desire.

The board may be more than ten rows or columns in size. If so, the indices should move on to using capital letters, in the same manner as hexadecimal does. That is, the label for index 10 should be A. Go all the way to the end of the alphabet if needed. If you have more than 36 rows or columns, then the lower-case letters should be used next. Once these characters are exhausted, use ? for all of the remaining rows or columns, if any, to indicate that you have run out of labels.

The board_get and board_set functions retrieve or modify cells within the board. Although these functions will be straightforward, they give us the opportunity to perform bounds-checking, which will help us spot errors in our code quickly rather than experiencing hard-to-identify memory corruption. And, they abstract away the representation of the board from the rest of our code, which will be valuable when we later implement the more complex bits alternative.

===> logic

The color enums in this file are similar to the cell enum in the board.h header file. These enums serve slightly different roles, however: the identity of the player whose turn it is, or the outcome of a game. The C programming language does not allow us to use the same names for different enum types, so we must vary the names based on use.

The function new_game should create a new game with the specified size and using the desired data representation (matrix or bits). For now, allow board_new to raise an error if the as-yet-unimplemented bits representation is requested; there is no need to add a second error check here and have to remember to remove it later. The stick parameter configures the length (number of cells in a row or column) occupied by a stick; and the square parameter indicates the side length of the square needed to win, both should be stored in the game struct.

In all of the functions you write in this file, do not reach into the contents of the matrix in your board directly. Rather, use the functions board_get and board_set exclusively. This provides two benefits. First, you will benefit from the bounds-checking you have added to these functions, allowing you to get helpful error messages when you, for instance, have an error in your indexing for the breakdown function. This is far preferable to baffling memory corruption. Even better, you can set a breakpoint in lldb on the error fprintf in these functions and quickly explore where the out-of-bounds indexing is coming from.

Second, when we implement the alternative, bits, representation in the next phase, if you have not written any code in logic.c that depends specifically on the matrix representation, then you will not need to revisit any of the functions in this file; they will still work because board_get and board_set abstract away the specific representation. Limiting the scope of code that needs to be updated when we change the internal details of how a board is stored will save us time and energy.

The drop_stick function drops a stick belonging to the player whose turn it is in the specified column vertically (if vertical is true) causing it to fall as far as it can. If the column is too full to fit it, it does nothing and returns false; otherwise, it returns true. If vertical is false, then it instead drops the stick horizontally, with the leftmost cell occupied by the stick being specified by the column parameter and the rest of the stick to its right (higher indices). For horizontal sticks, it again should determine the row to which the stick falls, and return true if there was room to place it, false otherwise. It is not the responsibility of this function to change the turn.

The breakdown function performs the gravitational effects of sticks disintegrating into constituent squares and falling as appropriate.

The behavior of this function, including the gravity, should be as specified in the earlier narrative.

This function is also not responsible for changing the turn.

The game_outcome function should report the outcome of a completed game, or that the game is still in progress.

===> Makefile

Here is the contents of your Makefile. The second line begins with a tab character.

evidence: pos.h pos.c board.h board.c logic.h logic.c evidence.c
	clang -Wall -g -O0 -o evidence pos.c board.c logic.c evidence.c

Determining whether the game is a draw requires checking whether there is room to drop a stick, and whether performing a breakdown would have any effect. The logic for these checks has many similarities to the logic of actually performing a stick drop or breakdown. Thoughtful design of these parts of your code can greatly reduce duplication.

You may build additional data structures to support the implementation as you see fit. Do not, however, change any of the data structure definitions we have provided in this document, or change the names or types of any of the operations specified on this page. We will depend on these types and operation names being intact for our evaluations.

Part 2:
 you will build the game administration code to allow two players to interactively compete in a game of Breakdown. You will also extend the board representation to support a more compact bits option.

===> Code structure

You will retain the structure of your prior work on Breakdown: pos to represent a position on the board, board to represent the state of the board in two different possible ways, and logic to enforce and implement the rules of the game.

We will modify board.c to add support for the bits representation. To provide the interactive gameplay feature, we will create play.c, a file that alternates turns between two human players (or one human pretending to be two different players, for testing purposes) to actually play the game.

To be clear, we retain the prior aspects of the game: the ability to use different board, stick, and square sizes and to still use the matrix representation, and will keep the functions you were mandated to build in the previous phase.

Like last time, you are expected to add comments for each of the functions.

The header files specify the bare minimum set of functions required for this assignment. Continue to identify opportunities for helper functions and for functions that would aid in debugging and testing. Judicious and thoughtful choices here will immensely improve the readability of your code and simplify your tasks.

===> Human players and interaction

We will write a loop that alternates between asking the black player for their move, then the white player for their move, and then the black player again, and so on.

Because we are creating a text-based program, our display of information and prompts to the players will take the form of text printed to the terminal. Similarly, then, we will receive instructions from the players via the keyboard.

This provokes the question: how do we read input from the keyboard? The complement to the printf function in C, that writes to the screen, is the scanf function, that reads from the keyboard.

The scanf function works very similarly to printf. The first argument is a string, consisting of format codes. The remaining arguments, one per format code in the string, specify where to store the information read from the keyboard (instead of what to write to the screen in place of patterns).

Because scanf needs to take in parameters and modify them to return back new values, it uses out-parameters. If you wish to read in an integer, character, floating-point value, etc., you must specify the proper format code (the same codes are used as for printf), then pass in a pointer to a variable of the right type to store it. The contents of this variable will then be updated with the read value.

A full treatment of this function is outside the scope of this assignment, although you are strongly encouraged to learn more about it when you are less busy. To avoid misleading you and for completeness, we will simply add one important fact: if you read in a string, you pass in the pointer to the string itself, rather than using an ampersand as you normally would for out-parameters. Functions that take in arrays can already modify them without using any extra out-parameter machinery. But, we will not necessarily be reading strings in this assignment.

As an example, here is code to read in a single character:

char ch;
printf("Please enter a character: ");
scanf("%c", &ch);

If you were to run this code, you would be prompted for a character. Once you type one in and press return, it will be read into ch.

===> Game administration

We will now build the main gameplay loop for Breakdown.

Create a file, play.c, whose main function (and associated helpers) makes a new game, then begins running it.

Your play executable should require command-line arguments: -w 5 -h 3 -k 2 -q 3, specifying (in the order shown) the width, height, stick length, and winning square side length that should be passed in to new_game. (In this example, the width is 5, the height is 3, the stick length is 2, and the winning square side length is 3, but the user should be able to specify any valid values on the command line, and in any order.)

Your overall gameplay interface must behave as follows:

1. Use board_show to draw the state of the board.
2. Print a prompt, either "Black: " or "White: ", depending upon whose move it is.
3. Read in a character (with a call to scanf).
4. Interpret this character as either an instruction to perform a breakdown, or the orientation for a stick drop. If the character is | (the same vertical line or pipe character used for "or" in C), then it indicates a vertical stick drop. If it is - (the hyphen or dash character), then it indicates a horizontal stick drop. If it is ! (the exclamation point), then it indicates a breakdown. In the event a stick drop is requested, write another prompt to request the specific column desired, and read in a single character. Parse this character following the same rules as the ones used in the first phase of the project for row and column number printing during board_show. For instance, 4 requests a stick be dropped into column 4. And, B requests a stick be dropped at column 11. You are not expected to handle boards where all of the digits, upper-case, and lower-case letters are insufficient to index the columns, because after a certain point, the labels became indistinguishable ?s.
5. If the input cannot be parsed (is an invalid character), so state and go back to step 2. (Simple equalities for the three different initial choices, and simple inequalities over the ranges of legal column characters, can be used for this. Note that your code is not expected to be robust to improper entry of multiple characters when only one is expected; this is substantially more complex to implement.)
6. If not a breakdown, turn the column character into an actual number. (Simple arithmetic using ASCII character codes can accomplish this.)
7. If the move requests that a stick be dropped into an already-full region, so state and go back to step 2.
8. Perform the requested breakdown, or drop a stick in the specified column with the desired orientation for the player whose turn it is. Following the convention established in the first phase, when dropping a horizontal stick, the column number indicates the leftmost part of the stick and can be fed directly into drop_stick.
9. Determine if the game is over. If it is, show the final board state, print the outcome, and exit the program.
10. If the game is not over, switch the turn to the other player, and then go back to Step 1.

Sprinkle in newlines where needed to make the interaction look visually appealing and to avoid clutter.

A note on reading characters from the keyboard: there is a slight complication, as the user enters a single character but must press return in order to have that input register. If you ask it only to read the single, intended character, the scanf function will give you the user's entry, but leave the newline character "buffered." This means that the newline character will remain pending and be available in a subsequent scanf. But, we don't want the next call to scanf to give us this newline; we want it to give us the next meaningful character, a column identifier, breakdown command, or stick orientation, that the user will enter, when the time comes. We can address this issue by asking scanf to both read a single character of interest, and to read a second character but to immediately discard it. We do so with the following syntax:

scanf("%c%*c", &ch);

Placing an asterisk between a percent sign and a format code instructs scanf to discard a value of that type, and a corresponding pointer is not expected in the parameter list.

At this point, you may be (and should be) eager to give your code a try. Note that you still haven't implemented the bits representation, but it is good to work out any bugs in this part before moving on. We will give you the Makefile next so you can run things now. After you get this code working, we will discuss the bits representation.

===> Makefile

Here is the new Makefile for this assignment: The second line starts with a tab.

play: pos.h pos.c board.h board.c logic.h logic.c play.c
	clang -Wall -g -O0 -o play pos.c board.c logic.c play.c

Don't forget the usual admonition about tabs.

===> Bits representation

The other task to complete in this phase of the project is to add support for the other method of storing the board, while keeping the existing (matrix) option fully intact.

The bits representation is dramatically more compact than the matrix representation you completed in the first phase. In this new representation, two bits are used per cell. The bits 00 denote an empty cell; 01, a black piece in a cell; and 10 a white one. The bits 11 will never be used.

The board is scanned from top to bottom, with individual rows scanned from left to right: in other words, in the same manner in which English text is read and written. In this order, the bits are placed in a one-dimensional array.

The first 32 bits are placed in the first element of this array. The first two bits, representing the top-left corner of the board, are the two least-significant bits (the two with the smallest place values) in this first array entry. Subsequent cells use higher-valued bits. Once the first array entry is used up, we move on to the next, again beginning with that entry's least-significant bits. We allocate precisely as few array elements as are needed for the desired board size. Depending upon the size of the board, the last array element may only be partially used; if so, the higher-value bits of that element will be unused.

Using the bitwise operators we saw in class, write implementations of the board functions that support this representation. For instance, board_new should allocate either style of board upon request, and board_get and board_set should retrieve or update the desired cell in whichever representation is in use by a given board. All the functions mandated in the first phase of the project should work on either type of board. They should behave identically, in the sense that, at a high level, whether the matrix or bits representation is in use, the same information is being stored or inspected. Of course, how that information is being stored will be very different in the two cases.

Put another way, if you start with a call to new_game, perform a series of calls to board_set, drop_stick, and breakdown, then you should receive identical results from calls to board_get, game_outcome, and board_show, whether the matrix or bits representation was used.

If, as we strongly recommended, you consistently used board_get and board_set in your logic.c code rather than directly accessing the matrix representation, then it will likely be the case that no changes will be needed to logic.c. However, if you accessed the matrix directly from this file, you will need to update logic.c to use board_get and board_set exclusively. This will then make the code in your logic.cagnostic as to the specific board representation in use. (The alternative would be to have switch statements, or similar, all throughout your logic.c as well, which would substantially increase its complexity and the difficulty of reading and maintaining it.)

Your main function will make a new board at the beginning of gameplay. Require that the user specify either the command line option -m or -b (exactly one of them), to use the matrix, or bits, representation, respectively. It should be possible to place this option before, among, or after the other options (though never between a letter and its corresponding number).

Although you can test your bits representation with interactive gameplay, a more thorough approach would be to use your evidence tests from the prior phase. If you wrote comprehensive tests, you can copy in your old evidence.c and switch the boards in your examples to use the bits representation, switch back to the old Makefile, and confirm that everything still works the same.

