	
	May 8, 2020

Project 3

Due May 18, 2020 at 11:59 PM

You will be working alone for this project. This specification is subject to change at anytime for additional clarification. For this project, you will be implementing a virtual machine threading API in either C or C++. Your virtual machine will be tested on the CSIF machines. You must submit the provided source code (including apps), your source files, readme and Makefile in a tgz file.
You will be provided a machine abstraction upon which you will be building the thread scheduler. The virtual machine will load the “applications” from shared objects that implement the VMMain function. The virtual machine will need to support multiple user space preemptive threads. Threads at the same priority level will time share with a quantum of one tick. The virtual machine file access is provided through the file API. Threads have three priority levels low, medium, and high. Threads are created in the dead state and have and have state transitions as shown below.

	
	
	3
	
	
	
	

	
	Ready
	2
	Running
	
	1.
	I/O, acquire mutex or timeout

	
	
	
	
	
	2.
	Scheduler selects process

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	5
	4
	4
	
	3.
	Process quantum up

	
	
	
	
	
	4.
	Process terminates

	
	
	
	
	
	
	

	1
	
	Dead
	
	6
	5.
	Process activated

	
	
	4
	
	
	6.
	Process blocks

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	Waiting
	
	
	
	

[image: image1.png]
A makefile has been provided that compiles the virtual machine as long as you provide your code as VirtualMachine.c or VirtualMachine.cpp. Do not modify any of the other files, just create your VirtualMachine.c or VirtualMachine.cpp file. It will create the virtual machine call vm. The applications can be built by making the apps with make apps. New apps can be built by adding a C or C++ file in the apps directory and adding $(BINDIR)/filename.so to the Makefile apps line dependencies.

You will be adding to the virtual machine a mutex API which provides a synchronization mechanism.

The MachineFileRead and MachineFileWrite functions require that shared memory locations be used to transfer data to/from the machine. In addition the maximum amount of data transferred must be limited to 512 bytes. VMFileRead and VMFileWrite must still be able to transfer up any number of bytes specified.

The vm syntax is vm [options] appname [appargs]. The possible options for vm are -t, and -s; -t specifies the tick time in millisecond, and -s specifies the size of the shared memory used between the virtual machine and machine. By default the tick time is set to 10ms, for debugging purposes you can increase these values to slow the running of the vm. The size of the shared memory is 16KiB. When specifying the application name the ./ should be prepended otherwise vm may fail to load the shared object file.

The machine layer is implemented using a cooperative process that communicates using the System V message queues. As such during your development your program may crash prior to the closing of the message queues. In order to determine the message queue id, you can use the ipcs command from the shell. You can remove the message queue with a call to ipcrm. You can read more about the System V IPC commands at: http://man7.org/linux/man-pages/man1/ipcs.1.html http://man7.org/linux/man-pages/man1/ipcrm.1.html

The function specifications for both the virtual machine and machine are provided in the subsequent pages.
You should avoid using existing source code as a primer that is currently available on the Internet. You must specify in your readme file any sources of code that you have viewed to help you complete this project.

Helpful Hints

· Create a VirtualMachine.c or VirtualMachine.cpp file and include VirtualMachine.h
· If your code is in VirtualMachine.cpp, you need to enclose all of your functions in extern "C" {}. For example it might look like:
#include "VirtualMachine.h" extern "C"{

TVMStatus VMStart(int tickms, int argc, char *argv[]){

...

}

...

TVMStatus VMFileWrite(int filedescriptor, void *data, int *length){

...

}

}

· You should probably get the applications working in the following order: hello.so, sleep.so, thread.so, file.so, and then preempt.so. File might be able to be done sooner but may need to be revisited once threads are added if done after hello.so.
· The VMStart and VMFileWrite functions will be the first you will want to write.
· You will want to use a skeleton function to be the initial entry point for the thread, and for it to call the entry from the VMThreadCreate. This is necessary in case the thread doesn’t explicitly call VMThreadTerminate.
· Disabling signals with MachineSuspendSignals and resuming them with MachineResumeSignals is similar to disabling and resuming interrupts and can provide mutual exclusion during the execution of critical code. This pair of functions can be safely nested without loss of mutual exclusion in the outer set.
· Don’t forget to enable signals with MachineEnableSignals before calling the
VMMain app entry point.

· You will need to use the volatile keyword for variables that may get modified during a signal handler. The volatile keyword guarantees that the compiler will generate code to go to memory for every access of the variable.
· You will likely want an idle thread that will execute when all other threads are blocked. Conveniently the thread priorities are set to HIGH, NORMAL, and LOW as 3, 2, 1, so a lower priority could be used for IDLE.
· It may seem intuitive to initialize the SMachineContext in VMThreadCreate with MachineContextCreate; however, you will run into difficulties with reactivating dead threads if not done in VMThreadActivate.
· Remember that when MachineContextSwitch is called the context is switched, so the function will not return until the context is switched back. You will need to update global and local variables before switching contexts.
· Each Mutex will probably need their own wait queues similar to the ready queues
	
	

When updating the machine interface, you may want to use a wait queue similar to that of your mutex. It may be possible that the amount of shared memory available has been used up by all of the other threads.
· In order to simplify the Machine file interaction, you could allocate sections of the shared memory into 512B chunks. This is the largest allowed for a single transfer and will simplify bookkeeping for allocated vs free space.
· Two new apps badprogram.so and badprogram2.so attempt to test the VM API by passing in invalid parameters. These are good tests to make sure you can pass.
Beginning VMStart

At the very beginning to get hello.so working you will want your VMStart to do the following in order:

1. Load the module with VMLoad that is specified by argv[0].
2. Initialize the machine with MachineInitialize.

3. Enable signals with MachineEnableSignals.

4. Call the VMMain entry point.

5. Terminate the machine with MachineTerminate.

6. Unload the module with VMUnloadModule.

7. Return from VMStart.

As you add more functionality you will be inserting more code at various points in VMStart

	

Name

VMStart – Start the virtual machine.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMStart(int tickms, TVMMemorySize sharedsize, int argc, char *argv[]);

Description

VMStart() starts the virtual machine by loading the module specified by argv[0]. The argc and argv are passed directly into the VMMain() function that exists in the loaded module. The time in milliseconds of the virtual machine tick is specified by the tickms parameter. The size of the shared memory space between the virtual machine and the machine is specified by the sharedsize.

Return Value

Upon successful loading and running of the VMMain() function, VMStart() will return

VM_STATUS_SUCCESS after VMMain() returns. If the module fails to load, or the module does not contain a VMMain() function, VM_STATUS_FAILURE is returned.

Project 3

3 of 12

Name

VMLoadModule – Loads the module and returns a reference to VMMain function.

Synopsys

#include "VirtualMachine.h"

typedef void (*TVMMainEntry)(int, char*[]);

TVMMainEntry VMLoadModule(const char *module);

Description

VMLoadModule() loads the shared object module (or application) specified by the module filename. Once the module has been loaded a reference to VMMain function obtained. The source for VMLoadModule is provided in VirtualMachineUtils.c

Return Value

Upon successful loading of the module specified by module filename, a reference to the VMMain function is returned, upon failure NULL is returned.

Name

VMUnloadModule – Unloads the previously loaded module.

Synopsys

#include "VirtualMachine.h"

void VMUnloadModule(void);

Description

VMUnloadModule() unloads the previously loaded module. The source for VMUnloadModule is provided in VirtualMachineUtils.c

Return Value

N/A

Name

VMTickMS – Retrieves milliseconds between ticks of the virtual machine.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMTickMS(int *tickmsref);

Description

VMTickMS() puts tick time interval in milliseconds in the location specified by tickmsref. This is the value tickms from the previous call to VMStart().

Return Value

Upon successful retrieval of the tick interval from the virtual machine, VMTickMS() returns VM_STATUS_SUCCESS. If the parameter tickmsref is NULL, VM_STATUS_ERROR_INVALID_PARAMETER is returned.

Name

VMTickCount – Retrieves number of ticks that have occurred since the start of the virtual machine.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMTickCount(TVMTickRef tickref);

Description

VMTickCount() puts the number of ticks that have occurred since the start of the virtual machine in the location specified by tickref.

Return Value

Upon successful retrieval of the number of elapsed ticks, VMTickCount() returns VM_STATUS_SUCCESS. If the parameter tickref is NULL, VM_STATUS_ERROR_INVALID_PARAMETER is returned.

Name

VMThreadCreate – Creates a thread in the virtual machine.

Synopsys

#include "VirtualMachine.h"

typedef void (*TVMThreadEntry)(void *);

TVMStatus VMThreadCreate(TVMThreadEntry entry, void *param, TVMMemorySize memsize, TVMThreadPriority prio, TVMThreadIDRef tid);

Description

VMThreadCreate() creates a thread in the virtual machine. Once created the thread is in the dead state VM_THREAD_STATE_DEAD. The entry parameter specifies the function of the thread, and param specifies the parameter that is passed to the function. The size of the threads stack is specified by memsize, and the priority is specified by prio. The thread identifier is put into the location specified by the tid parameter.

Return Value

Upon successful creation of the thread VMThreadCreate() returns VM_STATUS_SUCCESS. VMThreadCreate() returns VM_STATUS_ERROR_INVALID_PARAMETER if either entry or tid is NULL.

Name

VMThreadDelete – Deletes a dead thread from the virtual machine.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMThreadDelete(TVMThreadID thread);

Description

VMThreadDelete() deletes the dead thread specified by thread parameter from the virtual machine.

Return Value

Upon successful deletion of the thread from the virtual machine, VMThreadDelete() returns VM_STATUS_SUCCESS. If the thread specified by the thread identifier thread does not exist, VM_STATUS_ERROR_INVALID_ID is returned. If the thread does exist, but is not in the dead state VM_THREAD_STATE_DEAD, VM_STATUS_ERROR_INVALID_STATE is returned.

10 of 36

April 28, 2020

Name

VMThreadActivate – Activates a dead thread in the virtual machine.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMThreadActivate(TVMThreadID thread);

Description

VMThreadActivate() activates the dead thread specified by thread parameter in the virtual machine. After activation the thread enters the ready state VM_THREAD_STATE_READY, and must begin at the entry function specified.

Return Value

Upon successful activation of the thread in the virtual machine, VMThreadActivate() returns VM_STATUS_SUCCESS. If the thread specified by the thread identifier thread does not exist, VM_STATUS_ERROR_INVALID_ID is returned. If the thread does exist, but is not in the dead state VM_THREAD_STATE_DEAD, VM_STATUS_ERROR_INVALID_STATE is returned.

11 of 36

April 28, 2020

Name

VMThreadID – Retrieves thread identifier of the current operating thread.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMThreadID(TVMThreadIDRef threadref);

Description

VMThreadID() puts the thread identifier of the currently running thread in the location specified by threadref.

Return Value

Upon successful retrieval of the thread identifier from the virtual machine, VMThreadID() returns VM_STATUS_SUCCESS. If the parameter threadref is NULL, VM_STATUS_ERROR_INVALID_PARAMETER is returned.

13 of 36

April 28, 2020

Name

VMThreadState – Retrieves the state of a thread in the virtual machine.

Synopsys

	#include "VirtualMachine.h"
	

	#define VM_THREAD_STATE_DEAD
	((TVMThreadState)0x00)

	#define VM_THREAD_STATE_RUNNING
	((TVMThreadState)0x01)

	#define
	VM_THREAD_STATE_READY
	((TVMThreadState)0x02)

	#define
	VM_THREAD_STATE_WAITING
	((TVMThreadState)0x03)

TVMStatus VMThreadState(TVMThreadID thread, TVMThreadStateRef state);

Description

VMThreadState() retrieves the state of the thread specified by thread and places the state in the location specified by state.

Return Value

Upon successful retrieval of the thread state from the virtual machine, VMThreadState() returns VM_STATUS_SUCCESS. If the thread specified by the thread identifier thread does not exist, VM_STATUS_ERROR_INVALID_ID is returned. If the parameter stateref is NULL, VM_STATUS_ERROR_INVALID_PARAMETER is returned.

14 of 36

April 28, 2020

Name

VMThreadSleep– Puts the current thread in the virtual machine to sleep.

Synopsys

#include "VirtualMachine.h"

#define VM_TIMEOUT_INFINITE
((TVMTick)0)

#define VM_TIMEOUT_IMMEDIATE ((TVMTick)-1)

TVMStatus VMThreadSleep(TVMTick tick);

Description

VMThreadSleep() puts the currently running thread to sleep for tick ticks. If tick is specified as VM_TIMEOUT_IMMEDIATE the current process yields the remainder of its processing quantum to the next ready process of equal priority.

Return Value

Upon successful sleep of the currently running thread, VMThreadSleep() returns

VM_STATUS_SUCCESS. If the sleep duration tick specified is VM_TIMEOUT_INFINITE, VM_STATUS_ERROR_INVALID_PARAMETER is returned.

15 of 36

April 28, 2020

Name

VMPrint, VMPrintError, and VMFilePrint – Prints out to a file.

Synopsys

#include "VirtualMachine.h"

#define VMPrint(format, ...)

VMFilePrint (1,
format, ##__VA_ARGS__)

#define VMPrintError(format, ...)

VMFilePrint (2,
format, ##__VA_ARGS__)

TVMStatus VMFilePrint(int filedescriptor, const char *format, ...);

Description

VMFilePrint() writes the C string pointed by format to the file specified by filedescriptor. If format includes format specifiers (subsequences beginning with %), the additional arguments following format are formatted and inserted in the resulting string replacing their respective specifiers. The VMPrint and VMPrintError macros have been provided as a convenience for calling VMFilePrint. The source code for VMFilePrint is provided in VirtualMachineUtils.c

Return Value

Upon successful writing out of the format string to the file VM_STATUS_SUCCESS is returned, upon failure VM_STATUS_FAILURE is returned.

16 of 36

April 28, 2020

Name

VMFileOpen – Opens and possibly creates a file in the file system.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMFileOpen(const char *filename, int flags, int mode, int *filedescriptor);

Description

VMFileOpen() attempts to open the file specified by filename, using the flags specified by flags parameter, and mode specified by mode parameter. The file descriptor of the newly opened file will be placed in the location specified by filedescriptor. The flags and mode values follow the same format as that of open system call. The filedescriptor returned can be used in subsequent calls to VMFileClose(), VMFileRead(), VMFileWrite(), and VMFileSeek(). When a thread calls VMFileOpen() it blocks in the wait state VM_THREAD_STATE_WAITING until the either successful or unsuccessful opening of the file is completed.

Return Value

Upon successful opening of the file, VMFileOpen() returns VM_STATUS_SUCCESS, upon failure VMFileOpen() returns VM_STATUS_FAILURE. If either filename or filedescriptor are NULL, VMFileOpen() returns VM_STATUS_ERROR_INVALID_PARAMETER.

17 of 36

April 28, 2020

Name

VMFileClose – Closes a file that was previously opened.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMFileClose(int filedescriptor);

Description

VMFileClose() closes a file previously opened with a call to VMFileOpen().When a thread calls VMFileClose() it blocks in the wait state VM_THREAD_STATE_WAITING until the either successful or unsuccessful closing of the file is completed.

Return Value

Upon successful closing of the file VMFileClose() returns VM_STATUS_SUCCESS, upon failure VMFileClose() returns VM_STATUS_FAILURE.

18 of 36

April 28, 2020

Name

VMFileRead – Reads data from a file.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMFileRead(int filedescriptor, void *data, int *length);

Description

VMFileRead() attempts to read the number of bytes specified in the integer referenced by length into the location specified by data from the file specified by filedescriptor. The filedescriptor should have been obtained by a previous call to VMFileOpen(). The actual number of bytes transferred by the read will be updated in the length location. When a thread calls VMFileRead() it blocks in the wait state VM_THREAD_STATE_WAITING until the either successful or unsuccessful reading of the file is completed.

Return Value

Upon successful reading from the file, VMFileRead() returns VM_STATUS_SUCCESS, upon failure VMFileRead() returns VM_STATUS_FAILURE. If data or length parameters are NULL, VMFileRead() returns VM_STATUS_ERROR_INVALID_PARAMETER.

19 of 36

April 28, 2020

Name

VMFileWrite – Writes data to a file.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMFileWrite(int filedescriptor, void *data, int *length);

Description

VMFileWrite() attempts to write the number of bytes specified in the integer referenced by length from the location specified by data to the file specified by filedescriptor. The filedescriptor should have been obtained by a previous call to VMFileOpen(). The actual number of bytes transferred by the write will be updated in the length location. When a thread calls VMFileWrite() it blocks in the wait state VM_THREAD_STATE_WAITING until the either successful or unsuccessful writing of the file is completed.

Return Value

Upon successful writing from the file, VMFileWrite() returns VM_STATUS_SUCCESS, upon failure VMFileWrite() returns VM_STATUS_FAILURE. If data or length parameters are NULL, VMFileWrite() returns VM_STATUS_ERROR_INVALID_PARAMETER.

20 of 36

April 28, 2020

Name

VMFileSeek – Seeks within a file.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMFileSeek(int filedescriptor, int offset, int whence, int *newoffset);

Description

VMFileSeek() attempts to seek the number of bytes specified by offset from the location

specified by whence in the file specified by filedescriptor. The filedescriptor should have been

obtained by a previous call to VMFileOpen(). The new offset placed in the newoffset location if

the parameter is not NULL. When a thread calls VMFileSeek() it blocks in the wait state

VM_THREAD_STATE_WAITING until the either successful or unsuccessful seeking in the file

is completed.

Return Value

Upon successful seeking in the file, VMFileSeek () returns VM_STATUS_SUCCESS, upon failure VMFileSeek() returns VM_STATUS_FAILURE.

21 of 36

April 28, 2020

Name

MachineContextSave – Saves a machine context.

Synopsys

#include "Machine.h"

typedef struct{

jmp_buf DJumpBuffer;

} SMachineContext, *SMachineContextRef;

#define MachineContextSave(mcntx) setjmp((mcntx)->DJumpBuffer)

Description

MachineContextSave() saves the machine context that is specified by the parameter mcntx.

Return Value

Upon successful saving of the context, MachineContextSave () returns 0.

22 of 36

April 28, 2020

Name

MachineContextRestore – Restores a machine context.

Synopsys

#include "Machine.h"

typedef struct{

jmp_buf DJumpBuffer;

} SMachineContext, *SMachineContextRef;

#define MachineContextRestore(mcntx) longjmp((mcntx)->DJumpBuffer, 1)

Description

MachineContextRestore() restores a previously saved the machine context that is specified by the parameter mcntx.

Return Value

Upon successful restoring of the context, MachineContextRestore() should not return.

23 of 36

April 28, 2020

Name

MachineContextSwitch – Switches machine context.

Synopsys

#include "Machine.h"

typedef struct{

jmp_buf DJumpBuffer;

} SMachineContext, *SMachineContextRef;

#define MachineContextSwitch (mcntxold,mcntxnew)

if(setjmp((mcntxold)->DJumpBuffer) == 0)

longjmp((mcntxnew)->DJumpBuffer, 1)

Description

MachineContextSwitch() switches context to a previously saved the machine context that is specified by the parameter mcntxnew, and stores the current context in the parameter specified by mctxold.

Return Value

Upon successful switching of the context, MachineContextRestore() should not return until the original context is restored.

24 of 36

April 28, 2020

Name

MachineContextCreate – Creates a machine context.

Synopsys

#include "Machine.h"

typedef struct{

jmp_buf DJumpBuffer;

} SMachineContext, *SMachineContextRef;

void MachineContextCreate(SMachineContextRef mcntxref,

void (*entry)(void *), void *param, void *stackaddr, size_t stacksize);

Description

MachineContextCreate() creates a context that will enter in the function specified by entry and passing it the parameter param. The contexts stack of size stacksize must be specified by the stackaddr parameter. The newly created context will be stored in the mcntxref parameter, this context can be used in subsequent calls to MachineContextRestore(), or MachineContextSwitch().

Return Value

N/A

Name

MachineTerminate – Terminates the machine abstraction layer.

Synopsys

#include "Machine.h"

void MachineTerminate(void);

Description

MachineTerminate() terminates the machine abstraction layer. This closes down the cooperative process that is executing the machine abstraction.

Return Value

N/A

27 of 36

April 28, 2020

Name

MachineEnableSignals – Enables all signals.

Synopsys

#include "Machine.h"

void MachineEnableSignals(void);

Description

MachineEnableSignals() enables all signals so that the virtual machine may be “interrupted” asynchronously.

Return Value

N/A

28 of 36

April 28, 2020

Name

MachineSuspendSignals – Suspends all signals.

Synopsys

#include "Machine.h"

typedef sigset_t TMachineSignalState, *TMachineSignalStateRef;

void MachineSuspendSignals(TMachineSignalStateRef sigstate);

Description

MachineSuspendSignals() suspends all signals so that the virtual machine will not be “interrupted” asynchronously. The current state of the signal mask will be placed in the location specified by the parameter sigstate. This signal state can be restored by a call to MachineResumeSignals().

Return Value

N/A

29 of 36

April 28, 2020

Name

MachineResumeSignals – Resumes signal state.

Synopsys

#include "Machine.h"

typedef sigset_t TMachineSignalState, *TMachineSignalStateRef;

void MachineResumeSignals(TMachineSignalStateRef sigstate);

Description

MachineResumeSignals() resumes all signals that were enabled when previous call to MachineSuspendSignals() was called so that the virtual machine will my be “interrupted” asynchronously. The signal mask in the location specified by the parameter sigstate will be restored to the virtual machine. This signal state should have been initialized by a previous call to MachineSuspendSignals().

Return Value

N/A

30 of 36

April 28, 2020

Name

MachineRequestAlarm – Requests periodic alarm callback.

Synopsys

#include "Machine.h"

typedef void (*TMachineAlarmCallback)(void *calldata);

void MachineRequestAlarm(useconds_t usec, TMachineAlarmCallback callback, void *calldata);

Description

MachineRequestAlarm() requests periodic alarm callback from the machine abstraction layer. The callback function specified by the callback parameter will be called at a period of usec microseconds being passed the parameter specified by calldata. The alarm callback can be canceled by calling MachineRequestAlarm() with a parameter of 0 usec.

Return Value

N/A

31 of 36

April 28, 2020

Name

MachineFileOpen – Opens a file with the machine abstraction layer.

Synopsys

#include "Machine.h"

typedef void (*TMachineFileCallback)(void *calldata, int result);

void MachineFileOpen(const char *filename, int flags, int mode, TMachineFileCallback callback, void *calldata);

Description

MachineFileOpen() attempts to open the file specified by filename, using the flags specified by flags parameter, and mode specified by mode parameter. The file descriptor of the newly opened file will be passed in to the callback function as the result. The calldata parameter will also be passed into the callback function upon completion of the open file request. The flags and mode values follow the same format as that of open system call. The result returned can be used in subsequent calls to MachineFileClose(), MachineFileRead(), MachineFileWrite(), and MachineFileSeek(). MachineFileOpen() should return immediately, but will call the callback function asynchronously when completed. Upon failure the result will be less than zero.

Return Value

N/A

32 of 36

April 28, 2020

Name

MachineFileSeek – Seeks in a file in the machine abstraction.

Synopsys

#include "Machine.h"

typedef void (*TMachineFileCallback)(void *calldata, int result);

void MachineFileSeek(int fd, int offset, int whence, TMachineFileCallback callback, void *calldata);

Description

MachineFileSeek() attempts to seek the number of bytes specified in by offset from the location specified by whence in the file specified by fd. The fd should have been obtained by a previous call to MachineFileOpen(). The actual offset in the file will be returned in the result parameter when the callback function is called. Upon failure the result will be less than zero. The calldata parameter will also be passed into the callback function upon completion of the seek file request. MachineFileSeek() should return immediately, but will call the callback function asynchronously when completed.

Return Value

N/A

35 of 36

April 28, 2020

Name

MachineFileClose – Closes a file in the machine abstraction layer.

Synopsys

#include "Machine.h"

typedef void (*TMachineFileCallback)(void *calldata, int result);

void MachineFileClose(int fd, TMachineFileCallback callback, void *calldata);

Description

MachineFileClose() attempts to close the file specified by fd. The fd should have been obtained by a previous call to MachineFileOpen(). The result parameter when the callback function is called will be zero upon success; upon failure the result will be less than zero. The calldata parameter will also be passed into the callback function upon completion of the file closure request. MachineFileClose() should return immediately, but will call the callback function asynchronously when completed.

Return Value

N/A

	
	

Name

VMThreadTerminate– Terminates a thread in the virtual machine.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMThreadTerminate(TVMThreadID thread);

Description

VMThreadTerminate() terminates the thread specified by thread parameter in the virtual machine. After termination the thread enters the state VM_THREAD_STATE_DEAD, and must release any mutexes that it currently holds. The termination of a thread can trigger another thread to be scheduled.

Return Value

Upon successful termination of the thread in the virtual machine, VMThreadTerminate() returns VM_STATUS_SUCCESS. If the thread specified by the thread identifier thread does not exist, VM_STATUS_ERROR_INVALID_ID is returned. If the thread does exist, but is in the dead state VM_THREAD_STATE_DEAD, VM_STATUS_ERROR_INVALID_STATE is returned.

Project 3

4 of 12

	
	

Name

VMMutexCreate– Creates a mutex in the virtual machine.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMMutexCreate(TVMMutexIDRef mutexref);

Description

VMMutexCreate() creates a mutex in the virtual machine. Once created the mutex is in the unlocked state. The mutex identifier is put into the location specified by the mutexref parameter.

Return Value

Upon successful creation of the thread VMMutexCreate() returns VM_STATUS_SUCCESS. VMMutexCreate() returns VM_STATUS_ERROR_INVALID_PARAMETER if either mutexref is NULL.

Project 3

5 of 12

	
	

Name

VMMutexDelete – Deletes a mutex from the virtual machine.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMMutexDelete(TVMMutexID mutex);

Description

VMMutexDelete() deletes the unlocked mutex specified by mutex parameter from the virtual machine.

Return Value

Upon successful deletion of the thread from the virtual machine, VMMutexDelete() returns VM_STATUS_SUCCESS. If the mutex specified by the thread identifier mutex does not exist, VM_STATUS_ERROR_INVALID_ID is returned. If the mutex does exist, but is currently held by a thread, VM_STATUS_ERROR_INVALID_STATE is returned.

Project 3

6 of 12

	
	

Name

VMMutexQuery– Queries the owner of a mutex in the virtual machine.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMMutexQuery(TVMMutexID mutex, TVMThreadIDRef ownerref);

Description

VMMutexQuery() retrieves the owner of the mutex specified by mutex and places the thread identifier of owner in the location specified by ownerref. If the mutex is currently unlocked, VM_THREAD_ID_INVALID returned as the owner.

Return Value

Upon successful querying of the mutex owner from the virtual machine, VMMutexQuery() returns VM_STATUS_SUCCESS. If the mutex specified by the mutex identifier mutex does not exist, VM_STATUS_ERROR_INVALID_ID is returned. If the parameter ownerref is NULL, VM_STATUS_ERROR_INVALID_PARAMETER is returned.

Project 3

7 of 12

	
	

Name

VMMutexAcquire – Locks the mutex.

Synopsys

#include "VirtualMachine.h"

#define VM_TIMEOUT_INFINITE
((TVMTick)0)

#define VM_TIMEOUT_IMMEDIATE ((TVMTick)-1)

TVMStatus VMMutexAcquire(TVMMutexID mutex, TVMTick timeout);

Description

VMMutexAcquire() attempts to lock the mutex specified by mutex waiting up to timeout ticks. If timeout is specified as VM_TIMEOUT_IMMEDIATE the current returns immediately if the mutex is already locked. If timeout is specified as VM_TIMEOUT_INFINITE the thread will block until the mutex is acquired.

Return Value

Upon successful acquisition of the currently running thread, VMMutexAcquire() returns

VM_STATUS_SUCCESS. If the timeout expires prior to the acquisition of the mutex,

VM_STATUS_FAILURE is returned. If the mutex specified by the mutex identifier mutex does

not exist, VM_STATUS_ERROR_INVALID_ID is returned.

Project 3

8 of 12

	
	

Name

VMMutexRelease – Releases a mutex held by the currently running thread.

Synopsys

#include "VirtualMachine.h"

TVMStatus VMMutexRelease(TVMMutexID mutex);

Description

VMMutexRelease() releases the mutex specified by the mutex parameter that is currently held by the running thread. Release of the mutex may cause another higher priority thread to be scheduled if it acquires the newly released mutex.

Return Value

Upon successful release of the mutex, VMMutexRelease() returns VM_STATUS_SUCCESS. If

the mutex specified by the mutex identifier mutex does not exist,

VM_STATUS_ERROR_INVALID_ID is returned. If the mutex specified by the mutex

identifier mutex does exist, but is not currently held by the running thread,

VM_STATUS_ERROR_INVALID_STATE is returned.

Project 3

9 of 12

	
	

Name

MachineInitialize – Initializes the machine abstraction layer.

Synopsys

#include "Machine.h"

void *MachineInitialize(size_t sharesize);

Description

MachineInitialize() initializes the machine abstraction layer. The sharesize parameter specifies the size of the shared memory location to be used by the machine. The size of the shared memory will be set to an integral number of pages (4096 bytes) that covers the size of sharesize.

Return Value

Upon successful initialization MachineInitialize returns the base address of the shared memory. NULL is returned if the machine has already been initialized. If the memory queues or shared memory fail to be allocated the program exits.

Project 3

10 of 12

	
	

Name

MachineFileRead – Reads from a file in the machine abstraction.

Synopsys

#include "Machine.h"

typedef void (*TMachineFileCallback)(void *calldata, int result);

void MachineFileRead(int fd, void *data, int length, TMachineFileCallback callback, void *calldata);

Description

MachineFileRead() attempts to read the number of bytes specified in by length into the location specified by data from the file specified by fd. If the data value is not a location in the shared memory, MachineFileRead will fail; in addition if length is greater than 512 bytes MachineFileRead will also fail. The fd should have been obtained by a previous call to MachineFileOpen(). The actual number of bytes transferred will be returned in the result parameter when the callback function is called. Upon failure the result will be less than zero. The calldata parameter will also be passed into the callback function upon completion of the read file request. MachineFileRead () should return immediately, but will call the callback function asynchronously when completed.

Return Value

N/A

Project 3

11 of 12

	
	

Name

MachineFileWrite – Writes to a file in the machine abstraction.

Synopsys

#include "Machine.h"

typedef void (*TMachineFileCallback)(void *calldata, int result);

void MachineFileWrite(int fd, void *data, int length, TMachineFileCallback callback, void *calldata);

Description

MachineFileWrite() attempts to write the number of bytes specified in by length into the location specified by data to the file specified by fd. If the data value is not a location in the shared memory, MachineFileWrite will fail; in addition if length is greater than 512 bytes MachineFileWrite will also fail. The fd should have been obtained by a previous call to MachineFileOpen(). The actual number of bytes transferred will be returned in the result parameter when the callback function is called. Upon failure the result will be less than zero. The calldata parameter will also be passed into the callback function upon completion of the write file request. MachineFileWrite() should return immediately, but will call the callback function asynchronously when completed.

Return Value

N/A

Project 3

12 of 12

