
CSCI 1520 Computer Principles
and C++ Programming

Tutorial 11

WANG Fangzhou

SHB 913

fzwang@cse.cuhk.edu.hk

1

Outline

• Project: Lines of Action

2

Requirement
• Project: Lines of Action

• Deadline: 23:59, Sat 9 May 2020

• Requirements:

• Two files will be submitted: LinesOfAction.cpp AND gameplay.cpp ;

• Do not need to submit LinesOfAction.h

• Insert your name, student ID, and e-mail address as comments at the beginning of
your source files;

• Include suitable comments as documentation;

• Free of compilation errors and warnings;

• NO global variables allowed;

• Two submitted files will be graded separately, so you should not mix the
functionalities of the two files

3

Game Description
• Start condition:

• There are 2 players (player Black and player
White) and an empty square game board of fixed
size (8*8).

• Game stage:

• Two players take turns (Black starts first) to move
their pieces horizontally ↔, vertically ↕, or
diagonally ⤡⤢ following the rules:

• 1. The piece moves exactly as many squares as
there are pieces on the line in which it is
moving.(e.g., a2 in (a) can move exactly 2 squares
horizontally or diagonally.)

4

Game Description
• Start condition:

• There are 2 players (player Black and player
White) and an empty square game board of fixed
size (8*8).

• Game stage:

• Two players take turns (Black starts first) to move
their pieces horizontally ↔, vertically ↕, or
diagonally ⤡⤢ following the rules:

• 2. Checkers(i.e., pieces) can jump over other
checkers of the same player, but not over the
opponent's checkers. (b)

5

Game Description
• Start condition:

• There are 2 players (player Black and player
White) and an empty square game board of fixed
size (8*8).

• Game stage:

• Two players take turns (Black starts first) to move
their pieces horizontally ↔, vertically ↕, or
diagonally ⤡⤢ following the rules:

• 3. Checkers can land on an unoccupied square or
a square occupied by an opponent's checker. In
the latter case the opponent's checker is
captured and is removed from the board (c).

6

Game Description
• End of the game:

• Win: After a move, current player
makes all his/her pieces adjacent to
each other vertically, horizontally,
and diagonally => The player wins

• Suicide: After a move, all his/her
opponent’s pieces are adjacent to
each other vertically, horizontally,
and diagonally (because of Capture)
=> The opponent wins

• Draw game: When a move makes
both players’ pieces adjacent to each
other vertically, horizontally, and
diagonally => Draw game

7

(1) White wins

(2) Opponent(white) wins

(3) Draw game

• A class called LinesOfAction to model the chess game (implemented
by LinesOfAction.h(provided) and LinesOfAction.cpp)

• A gameplay.cpp file as client program of class LinesOfAction which
performs the game flow.

• Tips: You are recommended to finish the LinesOfAction class first
before writing the client program.

Program Specification

8

gameplay.cppLinesOfAction.cpp

LinesOfAction.h

includes includes
Important: Your two files will be graded
separately, so you should not mix the
functionalities of the two files.

Visual Studio Setting

9

(1) Create empty project

Visual Studio Setting

10

(2) Copy LinesOfAction.h to the project directory

Visual Studio Setting

11

(3) Add LinesOfAction.h to the Header Files

Right click “Header
files” -> Add -> Existing

Item -> Choose
“LinesOfAction.h” file
that you just copied

Visual Studio Setting

12

(4) Add new source file LinesOfAction.cpp

Right click “source files” ->
Add -> New Item -> Add new

cpp file called
“LinesOfAction.cpp”

Visual Studio Setting

13

(5) Add new source file playgame.cpp as step (4)
(6) File structure should be like (a)
(7) Include header file in playgame.cpp and LinesOfAction.cpp and you
can start working((b) and (c)). Some other libraries might be included
depending on your implementation.

(a)

(b)

(c)

Class LinesOfAction

14

• Private data members:

• char board[8][8]: storing either ‘B’,
‘W’, or ‘.’ (remember to initialize it
before the game start)

• char currentPlayer, nextPlayer: the
player in the current move and in
the next move respectively. They
should be either ‘B’ or ‘W’.

• int blacks, whites: the total number
of black and white pieces on the
board respectively (remember to
update it when capture occurs)

Class LinesOfAction

15

• Member functions:

• LinesOfAction(): constructor, you
may initialize the board,
currentPlayer, and other data
member in this function.

• printGame(): print out the board

• getCurrentPlayer(): return the
current player of the game

• swapPlayer(): swap the current and
next player in the game (modify
corresponding data member)

• move(string from, string to): carry
out the current player’s move from
the source position from to the
landing position to. The member
function returns true if the move is
valid; and false otherwise.

Class LinesOfAction

16

• Member functions:

• hasConnected(char p): returns true
if player p has all his/her pieces
adjacent to each other vertically,
horizontally, and diagonally; and
false otherwise.

• gameOver(): checks if the game is
over. It returns either ‘B’, ‘W’, ‘D’, or
‘-‘ to show current game status.
Inside this function, you may call
hasConnected(char p) to help you
decide the result.

Class LinesOfAction

17

• Constructor LinesOfAction():

• 1. Use nested for-loop to initialize
the board

• 2. Set currentPlayer to ‘B’ and
nextPlayer to ‘W’

• 3. Set blacks to 12 and whites to 12

Class LinesOfAction

18

• printGame():

• Use nested for-loop to print the
board

• Almost the same as assignment 5

Class LinesOfAction

19

• getCurrentPlayer():

• Simply return currentPlayer

Class LinesOfAction

20

• swapPlayer():

• Exchange the value of currentPlayer
and nextPlayer

More about move(string from, string to)

21

Check for validity:

• 1. check if from and to is valid input (like what
we did in assignment 5)

• 2. check if the from position contains a piece
of the current player(look up in board[][])

More about move(string from, string to)

22

Check for validity:

• 3. check if the move is either horizontal,
vertical, or diagonal:

• Assume that we are moving from a1 to
c1, we know we are moving horizontally
as the row number is both “1” (similarly
for vertical move)

• How to check if we are moving
diagonally? Compare the horizontal
displacement and the vertical
disaplacement!

• (e.g., from e0 to b3, |’e’ – ‘b’| == |0 -3|=>
so we know that it’s a diagonal move)

More about move(string from, string to)

23

Check for validity:

• 4. The move is exactly as many squares as
there are pieces on the line in which it is
moving. (After deciding the move direction,
use a for loop to count the number of pieces
that are on the line in which it is moving)

• E.g., For move “e0 to b3”, we count from a4 to
e0 (or e0 to a4) and found that there are 3
pieces = |’e’-’b’|

• => pass this test

More about move(string from, string to)

24

Check for validity:

• 5. The move does not jump over opponent’s
piece(s). (use a for loop to check cells between
from and to):

• Currently the direction is known from 4, it can
either be “vertical”, “horizontal”, “upper-left to
lower-right” or “upper-right to lower-left”.

• Pseudocode(e.g., when the direction is “upper-
left to lower-right” and from is located at the
upper-left corner):

• 6. The landing position to is either an empty
square or an opponent’s piece.(look up in
board[][])

1. r = from.row, c = from.col
2. While(r <= to.row): // haven’t reached to
3. if(board[r][c] == nextPlayer):
4. Return false; // Meet opponent Piece
5. r++, c++

More about move(string from, string to)

25

Check for validity:

• The move is valid if it can pass all the 6 tests.

• Notes: If the move is valid, remember to

• (1) Update the board

• (2) Update blacks or whites (if some piece is
captured, the number will decrease by 1)

• The function should return true or false

26

• hasConnected(char p):

• Idea: Consider the example shown at the right:

• 1. Start from any ‘B’

• 2. Count the number of ‘B’s that are connected with
the initial B (store the result as cnt=9)

• 3. If cnt == blacks, then we can say that player B has all
pieces connected.

• But how to do step2?

• One possible solution will be breadth-first search(BFS).

More about hasConnected(char p)

27

• Suppose we have found board[r][c] == p:

• The pseudocode for BFS to calculate cnt:

More about hasConnected(char p)

1. Create 2D array Visited[8][8] and vectors q_row, q_col
2. Initialize Visited to be all false; and assign Visited[r][c]

to be true
3. Create variable cnt = 1 (containing the starting point)
4. q_row.push_back(r); q_col.push_back(c)
5. While(q_row is not empty):
7. Row = q_row[0]
8. Col = q_col[0]
9. q_row.erase(q_row.begin())
10. q_col.erase(q_col.begin())
11. For all neighbors(R_new, C_new) around (Row,Col):
12. if(board[R_new][C_new] == p AND Visited[R_new][C_new] == false):
13. q_row.push_back(R_new), q_col.push_back(C_new)
14. cnt ++, Visited[R_new][C_new] = true
15. Return cnt as result

Here we are considering all 8 directions (↔,
↕, ⤡, ⤢), note that some neighbor may be
out of the board, so you will need exclude

those out-of-bound neighbors

28

• hasConnected(char p):

• Notes: In practice, it is more natural to use queue to
implement BFS. References can be found in the
appendix if you are interested in it.

• The BFS implementation is not compulsory. You are
also encouraged to produce your own solution to this.

More about hasConnected(char p)

Client Program(Flow)

29

• 1. Create a LinesOfAction object.

• 2. Prompt the player to make a move

• Notes: Input consists of the source and landing
positions, each of which is a character followed by
an integer. (May read the input like Assignment 5)

• 3. Make the player move:

• If (invalid) => warn the player and prompt the same
player to enter again. (use move function).

Client Program(Flow)

30

• 4. Swap the players. (use swapPlayer function)

• 5. If the game is not over, go back to step 2. (use
gameOver fuction)

• 6. When the game is over, print the messages “B
wins!”, “W wins!”, and “Draw game!” accordingly.

Important notes

31

• Your LinesOfAction class should not contain any cin statements. All user
inputs shall be done in the client program (gameplay.cpp) only (Or we will
not be able to grade your project with our designed flow)

• Your LinesOfAction class should not contain any cout statements except in
the printGame() member function (for printing the game board).

Thank You!
&

Good luck with your project!

32

Appendix

33

The following resources may help you better understand the graph
searching algorithm we used in hasConnected(char p)

How to use queue:
http://www.cplusplus.com/reference/queue/queue/push/

How to use vector: Tutorial 10

Introduction to Queue: https://www.geeksforgeeks.org/queue-set-
1introduction-and-array-implementation/

Introduction to BFS:
https://www.cse.cuhk.edu.hk/~taoyf/course/comp3506/lec/bfs.pdf

BFS and DFS:
https://web.stanford.edu/class/archive/cs/cs106x/cs106x.1192/lectures/Lec
ture22/Lecture22.pdf

http://www.cplusplus.com/reference/queue/queue/push/
https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/
https://www.cse.cuhk.edu.hk/~taoyf/course/comp3506/lec/bfs.pdf
https://web.stanford.edu/class/archive/cs/cs106x/cs106x.1192/lectures/Lecture22/Lecture22.pdf

How to use cl to compile project
containing multiple .cpp files?

34

Go to the corresponding directory containing all .cpp files(.h file should also exist).
Run: cl /Ehsc gameplay.cpp LinesOfAction.cpp

