User Interface Plan/Style Guide
FINAL PROJECT – GAME OF LIFE
This project will simulate the board game known as Game of Life. The simulation of the board will occur through printing text onto the user’s console. I will try to follow the rules of the game the best I can, therefore I plan to allow more than just two players per game (I think we can have up to 6 in the real game, maybe 4 is a good number for me). The user will be prompted to roll the dice every time it’s their turn. The dice will return a number based on a random function. From that point on, the players will “walk” the number rolled on the dice and the “square” in which they land on will determine what happens. *I may have to search or look up in a real game what exactly each square says and choose which ones will be adequate to implement in this project.* The text-based board will display each player’s current position in the board by showing different characters. The player that finishes the board and has the most money will be the winner. To count money and compare successfully, the project will be equipped with a feature that will keep track of each of the player’s money. The player will mainly have two roles: 1) to press the key to roll the dice and 2) to perform an action according to which square they landed in. The player will not be required to know anything about the game before playing. Hopefully, all steps will be intuitive enough that the players will only have to choose from the options given. Having some knowledge of the game or experience may give a player a competitive advantage, however, to play it as a beginner, no previous experience will be necessary. An outside link will be available through the game that will link the user to the full and complete rules of the game.


Style Guide Rules
Variables and others: I will follow the camelCase style for naming variables and others, including classes, routines etc. Global variables, if in need, will use the same convention, but will have a “g_” before its name, as in g_variableName.
Spacing: Spacing between routines will have one blank line (2 enters).
Layout: Sub-code that belongs to a class or routine must be indented by one tab to clearly show where it belongs. The same will apply to code inside an if statement, while and for loops. 
Braces: Braces will be opened in the same line declaring the routine or class, and will be closed aligned to the beginning of the declaration, as in: 
int routineExample{
//some code
}
Parenthesis: Parenthesis to declare parameters or to pass parameters will be next (no space) to the routine call or declaration, as in:
int routineExample(int ex){
//code
}
callingRoutine(parameter);
Comments: Single line comments will use “//” and will be placed in the same line as the piece of code that the comment refers to. Multi-line comments will begin with *\ and end with /* and should be placed on top of the code or routine that is referring to. 
