CS3377 Assignment3 Last Name: Lamichhane First Name: Ashish UTD NetID axl173530
©2020 Richard K. Min, cs3377. The University of Texas at Dallas

CS3377 Assignment 4 Due: 4/27 Monday Noon
Last Name: Lamichhane
First Name: Ashish
NetID (email): axl173530
Submission requirements.

Submit (1) a word document (this file with your answers and listing of any program & its run [log or screenshots]) and (2) a zip file of a folder which will contain all the codes (all the source codes and executables, Makefile, and the instruction for how to compile and run) and a document file (.doc or .docx).

This word document (this file) is your documentation (as a basis to add your answers) to be included here - all your answers, all your program-listings, instructions to compile and run [screen-shots, terminal text, or session log] to show your work done, including how to compile and run for each cases.

** Your executable codes (that you submit) should run in cs1 or cs linux system without any change or compilation.

** Bring this cover sheet (this page) to TA for your demo.

** All source codes and binary executables should be submitted (otherwise, it is automatic 0).

** Severe penalty for any binary executable not run in cs1 or for any source code not being compiled,

Upload (1) this document file (with your answers) and (2) a zip file (containing all the codes [source and binary etc.] and run-log).
Score-sheet

	
	
	
	
	
	
	
	
	
	
	Demo & Document

	Part1
Ping with N threads
CLO4,5,7

40%
	#1
	#2
	#3
	#4
	#5
	#6
	
	
	Makefile
	

	Part2
Ping with socket prog

CLO4,5,7

60%
	#1
	#2
	#3
	#4
	#5
	#6
	#7
	#8
	Makefile
	

Note. Any "poor" documentation (that is, this document with your answers etc.) may result in a penalty (up to -10%). No demo will be graded with a penalty of -10%.
Warning: Your program (for example, binary executable codes that you submit) should run in cs1 without any change or recompilation. There will be a heavy penalty (0 for each part) if not running. There will be also a heavy penalty (up to 100% for each part) if your program (source code) cannot compiled as you submitted.

CLO1 – Unix Commands

CLO2 – Shell Scripting (sh, bash, python)

CLO3 – Regular Expression (with grep, find, ls and sort commands, or flex/bison)

CLO4 – Prog Env (editor vi, c/c++ compilers, linker, make)
CLO5 – Process (fork, thread)
CLO6 – Adv IO & binary files (c++ object serialization, python image file & binary IO)

CLO7 – IPC (pipes, sockets and signals)
CLO8 – file system

CLO9 – Version Control System(with git, github, gitlab, etc.)
Please insert Table of Content here for this document, to show the link and page number of Part1, Part2, etc.

Table of Content of this document (you should generate and insert TOC here)
First, create a folder (a4 in cs3377) for Assignment3.
Submit a zip file containing this folder (with all the files in it: source program, executable, Makefile, and run-log) of each part to be summitted, along with this word document.

Warning. Do not use system() call throughout this assignment. Or your grade will be 0.
Part 1.

First, create a folder (a4part1 in a4 folder) for your work of this part.
Consider ping command.

Note. For a reference, you may like to read about ping command in wiki:
https://en.wikipedia.org/wiki/Ping_%28networking_utility%29

Here are a few examples of ping command: ping -c 3 www.utdallas.edu
This ping command will send a ping ICMP packet to check whether www.utdallas.edu server receives a ping packet and send it back to the system (cs1.utdallas.edu). The -c option sets the number of times for ping ICMP packet to be sent (e.g., 3 times) as shown below.
	{cslinux1:~} ping -c 3 www.utdallas.edu
PING www.utdallas.edu (10.182.71.70) 56(84) bytes of data.
64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=1 ttl=248 time=0.745 ms
64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=2 ttl=248 time=0.777 ms
64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=3 ttl=248 time=0.743 ms
--- www.utdallas.edu ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 0.743/0.755/0.777/0.015 ms

{cslinux1:~} ping -c 3 www.google.com
PING www.google.com (172.217.6.132) 56(84) bytes of data.
64 bytes from dfw25s16-in-f4.1e100.net (172.217.6.132): icmp_seq=1 ttl=49 time=2.90 ms
64 bytes from dfw25s16-in-f4.1e100.net (172.217.6.132): icmp_seq=2 ttl=49 time=2.90 ms
64 bytes from dfw25s16-in-f4.1e100.net (172.217.6.132): icmp_seq=3 ttl=49 time=2.93 ms
--- www.google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2002ms
rtt min/avg/max/mdev = 2.906/2.916/2.933/0.012 ms

The system runs the ping command and prints the result. It shows for each ping: (1) the size of packet received (64 bytes), (2) the server responded to ping (DNS name and IP address), (3) the sequence number of ICMP packet (1,2,3 in this case), (4) the limits for the number of network hops (TTL) (=49), (5) round trip time in ms (rtt) (=0.745, 0.777, 0.743). At the end it lists the summary of the ping commands. In this example, it sent 3 packets, 3 received, none of the packet lost, and total time (of 2002 ms or about 2 seconds) to be done. The rtt (round-trip time) statistics of minimum, average, maximum time, with standard deviation in ms.

Design and implement a C++ program to do the following tasks with threads.

Name the program: a4pingThread.cpp

Name the executable: a4pingThread
(1) The program runs to read an input file (a4ping1Data.txt). Each line of the file contains three arguments, to run "ping" command as shown below.

www.utdallas.edu 5 3

www.utdallas.edu 10 5

www.google.com 15 3

The first argument is a host name (e.g., www.utdallas.edu) for the ping command, and the second argument is the number for "-c" option (the number of times of ICMP packet sent and returned) where the range of it is from 1 to 20 (inclusively). The third argument is for the number of the threads to be created, to run this ping command with -c option.

(2)
The program (the parent process) creates a number of threads ranging from 1 to 5, specified by the third argument in the input data file. The parent waits all the threads to be terminated with the ping command. Each thread runs the ping command as specified and then to be terminated. With a pipe shared by each thread and the parent process, the parent process gets the access of the result of each ping command run by a thread. With dup or dup2, the parent process reads the output of each thread.

(3) The parent process processes the results of the ping command run by these threads. Reading each line of ICMP packet result, the program gets rtt times. Out of these rtt times, it will find or compute the number of packets transmitted, the minimum rtt time, maximum rtt time, and average rtt times, and standard deviation of rrt times, to be compared with the summary of the ping command (at the end).

PING www.utdallas.edu (10.182.71.70) 56(84) bytes of data.
64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=1 ttl=248 time=0.745 ms
64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=2 ttl=248 time=0.777 ms
64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=3 ttl=248 time=0.743 ms
--- www.utdallas.edu ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 0.743/0.755/0.777/0.015 ms

(4) The program should print the status of each step with a proper heading. For example,

Step1. a3ping3 process starts. pid=517

Step2. Ready to read the input file: a3ping3Data.txt

Step3. Input Data is: www.utdallas.edu 5 3

Step4. Create Threads

 Thread 1 (tid=1001) to run: ping -c 5 www.utdallas.edu

 Thread 2 (tid=1002) to run: ping -c 5 www.utdallas.edu

 Thread 3 (tid=1003) to run: ping -c 5 www.utdallas.edu

Step5. All Threads are terminated. The parent processing the results

Processing Thread 1 result

Read and print each line, to be processed

PING www.utdallas.edu (10.182.71.70) 56(84) bytes of data. …

Processing Thread 2 result

Read and print each line, to be processed

PING www.utdallas.edu (10.182.71.70) 56(84) bytes of data. …

Processing Thread 3 result

Read and print each line, to be processed

PING www.utdallas.edu (10.182.71.70) 56(84) bytes of data. …

Step6. Summary of ping command

For example, the input line read for this request, the total number of packets sent for what DNS Name (e.g., www.utdallas.edu), the total time (real, user, etc.) for this request, and a trailer message saying that it is done.
And the program repeats Step3 to Step6 for next input line until it is done.

Step7. End of the program run

(5) Test the program with the following data file containing the following test cases:

www.utdallas.edu 5 3

www.utdallas.edu 10 5

www.google.com 15 3

(6) Provide Makefile. You may combine all programs in this part into one Makefile.

Part 2.

Design and implement C++ programs (client & server with socket prog) to do the following tasks.

Name the client program: a4pingClient.cpp

Name the client executable: a4pingClient

Name the server program: a4pingServer.cpp

Name the server executable: a4pingServer

Your task is to design and implement two programs (one client and one server, communicating through socket programming).
(1)
Server Program and Client Program to start.

The server program takes one argument (a port number) for the server to listen.
The client program takes two arguments (server's IP address and server's port number, for the socket to be connected). The client program connects to the server which is up and listening.

Further provide a timer to be set for the lifetime of server and client to run (e.g., 5 minutes) with a timer for server and for client, to terminate itself after 5 minutes of the run. See the sample program to set a timer (shown below).

	// Sample code to set a timer to interrupt after some time (to terminate the run).

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <signal.h>

#include <unistd.h>

static int timer_expired = 0;

static void alarm_handler(int sig)

{ timer_expired=30; }

int main()

{ // Set up a signal hander to call alarm_handler()

 // when SIGALRM is raised

 sigaction(SIGALRM, &(struct sigaction){.sa_handler = alarm_handler}, NULL);

 time_t t;

 srand((unsigned) time(&t));

 timer_expired = 0;

 alarm(1); // raise SIGALRM in 1 seconds

 while (!timer_expired) {

 int s=(rand()%4)+1;

 printf("%d", s);

 }

 return 0;

}

// check APUE Chapter 10 Section 10 & Figure 10.1 for SIGALRM for timer

(2) After connection, the client program then reads an input file (a4ping2Data.txt). Each line of the file contains two arguments, to run "ping" command as shown below.

www.utdallas.edu 2

www.utdallas.edu 3

www.google.com 4
The first argument is a host name (e.g., www.utdallas.edu) for the ping command, and the second argument is the number for "-c" option (the number of times of ICMP packet sent and returned) where the range of it is from 1 to 20 (inclusively).

(3)
The client program sends each input line (a ping request) to the server.
(4)
The server receives each request. The server (the parent process) creates one child process and then in wait state for the child process to be terminated. The child process runs the ping command, to output the result in socket, and then to be terminated. The parent process is then waken up to get the next ping request from the client. At the end of the input data, the client program sends "done" to inform the server that all the requests are done. Then both the client and the server will be terminated.
(5) The client receives the results of the ping command from the server, reading each line of ICMP packet to get rtt times. Out of these rtt times, it will find and/or compute the number of packets transmitted, the minimum rtt time, maximum rtt time, and average rtt times, and standard deviation of rrt times, to be compared with the summary of the ping command (at the end).

PING www.utdallas.edu (10.182.71.70) 56(84) bytes of data.
64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=1 ttl=248 time=0.745 ms

64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=2 ttl=248 time=0.777 ms

64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=3 ttl=248 time=0.743 ms

--- www.utdallas.edu ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 0.743/0.755/0.777/0.015 ms

(6) Output the status of each step with a proper heading. For example, assuming NNNNN is the port number that the server is listening.

Step01. Server - Start with Port=NNNNN.

The server PID is: xxxxx.

Step02. Client – Start with IP=127.0.0.1 and Port=NNNNN

The client PID is: yyyyy

Step03. Client - Connected to Server

Step04. Client - Ready to read the input file: a4ping2Data.txt

Step05. Client - Input Data is: www.utdallas.edu 5

Step06. Client - Sending Input Data to the Server
Step07. Server – Input Data received: www.utdallas.edu 5

Step08. Server - Fork child process

Child Process (pid=518) to run: ping -c 5 www.utdallas.edu

Step09. Server – Sent the result of the ping command to the client via socket
Step10. Client – Received Output from the server via socket

Read each record from the socket to be printed and to be processed.

PING www.utdallas.edu (10.182.71.70) 56(84) bytes of data.
64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=1 ttl=248 time=0.745 ms

64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=2 ttl=248 time=0.777 ms

64 bytes from lb-int-ti-1a.utdallas.edu (10.182.71.70): icmp_seq=3 ttl=248 time=0.743 ms

--- www.utdallas.edu ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 0.743/0.755/0.777/0.015 ms

. . .

Step11. Client - Summary of ping command (as a trailer, for example, to state this case is done).

And the program repeats Step5 to Step11 for next input line.

Step12. End of the program run

(7) Test the program with the following data file containing the following test cases:

www.utdallas.edu 5

www.utdallas.edu 10

www.google.com 15

(8) Provide Makefile

WARNING. Please make sure to kill any running process after each run. If you do not clean up these processes (still alive and left behind), then you could lose your login privilege as a result. There have been a few cases reported each semester (as one's user account is locked due to an abusive use).
** Clean up any process (server or client) with kill command after you are done (for test or debug etc).
After all done, kill the server (ps to find the pid of the server, and kill command to kill it).

Use ps and netstat commands to check the server terminated and the port is now freed (available).

(Or you may set up a timer for some time (e.g., 5 minutes) to be interrupted and terminate itself.)

** For server and client, you should have two separate login sessions (e.g., ssh or MobaXterm sessions – login to each session: one session to run the server and the other session to run the client). With this setup, you can show each program running separately. Save each terminal text of session-history/log to be submitted.
Assignment 4 Solution
Place your answer here for (a) your program listing and (b) its runs, with a proper headings for each part, and also upload (submit) both (1) this word document and (2) a zip file of all your codes, any output files (of server and of clients), and the console log for this assignment for your test runs.
For all listing below, use font (Courier New) and font size: 8 or 9.

Part 1. Ping with Threads
Program listing (a4pingThread.cpp)

	

To compile the program

	

Test Case file (a4ping1Data.txt)

	

Log - Program runs (a4pingThread). Also place this run result to a file (a4pingLog.txt) to be submitted.

	

Makefile

	

List of files in a4part1 directory. Run the following commands and its result.

date

whoami

hostname

ps

pwd
ls -l

	

Part 2. Ping with Socket Prog
Program listing (a4pingSocket.cpp)

	

Program listing (a4pingClient.cpp)

	

To compile the programs

	

Test Case file (a4ping2Data.txt)

	

For your run. Keep the log of Server separated from the log of Client. That is, you should log in one ssh session to run your server in one terminal (console). Then you should start another ssh session for you to log in to run the client in the other terminal (console). Your runs should be done in cs1.utdallas.edu

Log – Server program runs (a4ping2Server). Also place this run result to a file (a3ping2ServerLog.txt) to be submitted.
	

Log – Client program runs (a4ping2Client). Also place this run result to a file (a3ping2ClientLog.txt) to be submitted.

	

Makefile

	

List of files in a4part2 directory. Run the following commands and its result.

date

whoami

hostname

ps

pwd

ls -l

	

10

