
CSE205 Object Oriented Programming & Data Structures Assignment 06 :: 100 pts

Page | 1

Assignment 06 – Final Assignment

You must work alone on this assignment (You may not work with a partner).
Assignment Objectives
After completing this assignment the student should be able to,

x Demonstrate proficiency with the concepts covered in this course.

Assignment Requirements
For this assignment you must implement a program of your own design that demonstrates a significant number of the
9 following concepts that we have covered in this course over the semester:

1. Writing classes to define objects that know things and do things
a. Private instance variables to store things that object of this class must know
b. Public getter and setter methods to provide access to the things that objects of this class know and to

maintain a valid state
c. Public methods to encapsulate the things that objects of this class must do
d. Private methods to support and simplify the public methods
e. Constructors to conveniently and consistently initialize object of this class to a valid state

2. Composing programs out of objects that collaborate to realize the responsibilities of the program.
a. Includes Classes/object with “has a” relationships (composition)
b. Includes Collections of like objects

3. Leveraging abstract and/or concrete base classes and/or interfaces
a. Includes Classes/objects with “is a” relationships
b. Using inheritance to extend the functionality of a base class
c. Using inheritance to implement the functionality of an interface
d. Defining and using classes with a common methods, but different (polymorphic) behavior
e. Overriding base class or interface methods
f. Explicitly calling base class constructors

4. Using UML to concisely describe the essential features of classes
a. Writing UML class diagrams that detail the classes that make up a program
b. Including attributes and operations
c. Including visibility, data types, arguments, return values, etc.
d. Including relationships between classes

5. Choosing or implementing data structures that best meet the needs of a given problem
a. Includes Justifying the use or implementation of any list or tree-like data structures in your program

6. Leveraging generics in Java
a. Includes Explaining any use of Java’s standard library generic types
b. Includes Implementing your own generic classes or methods

7. Using Big-O notation to describe the algorithmic complexity of an algorithm that you are using in your program
8. Writing recursive algorithms

a. An explanation of why you are implementing a given algorithm recursively rather than iteratively
b. Explaining, in detail, how any recursive algorithm that you use in your program works

i. What is/are the base case(s)
ii. What is/are the recursive case(s)

iii. How does the algorithm insure that each recursive call is closer to the base case?
9. Choosing and using sorting algorithms

a. Includes Explaining why you are using or implementing any algorithms you are using in your program.

CSE205 Object Oriented Programming & Data Structures Assignment 06 :: 100 pts

Page | 2

What to turn in
For this assignment you must upload the following files by the due date.

x A .pdf file describing your project,
o With list and explanation of which concepts/criteria your program demonstrate

� Including how and why you project includes the application of this concept/criterion
� Including how many points your project should score for this concept/criterion

x All .java files that you write
x Any additional files that your program requires to work
x Any additional (.pdf) files that contain artifacts like UML diagrams or Big-O analysis

Any assignment submitted less than 24 hours after the posted due date will have 10 points deducted.

Any assignment submitted more than 24 hour after the posted due date will receive a zero in the grade book.

There are 150 points available in this rubric. The score for the assignment is out or 100, so a score of 100 will be full
credit and anything over 100 will be extra credit.

Grading Rubric

Criterion Excellent Good Fair Poor/NA
Writing classes to
define objects that
know things and do
things

Points:
20: Excellent
15: Good
10: Fair
 5: Poor/NA

Program includes at
least three concrete
classes.

&
All variables are
declared private or
protected.

&
Getter and setter
methods are used to
maintain a consistent
object state.

&
All methods of each
class perform
operations that are
consistent with its
responsibilities

Program includes at
least two concrete
classes.

&
Most variables are
declared private or
protected.

&
Getter and setter
methods are used to
maintain a consistent
object state.

&
All methods of each
class perform
operations that are
consistent with its
responsibilities

Program includes at
least two concrete
classes.

&
Most variables are
declared private or
protected.

&
Getter and setter
methods are used to
maintain a consistent
object state.

&
Most methods of
each class perform
operations that are
consistent with its
responsibilities

Program includes
fewer than two
concrete classes.

||
Most variables are
declared public.

||
Getter and setter
methods are not
used to maintain a
consistent object
state.

||
Most methods of
each class perform
operations that are
inconsistent with its
responsibilities

Composing programs
out of objects that
collaborate to realize
the responsibilities of
the program

Points:
20: Excellent
15: Good
10: Fair
 5: Poor/NA

Program meets All of
its responsibilities
through a well-
designed
combination of
programmer defined
and standard library
classes.

&
All of the major
things that the
program does are

Program meets Most
of its responsibilities
through a well-
designed
combination of
programmer defined
and standard library
classes.

&
Most of the major
things that the
program does are

Program meets Most
of its responsibilities
through a well-
designed
combination of
programmer defined
and standard library
classes.

&
Some of the major
things that the
program does are

Program meets Few
of its responsibilities
through a well-
designed
combination of
programmer defined
and standard library
classes.

||
Few of the major
things that the
program does are

CSE205 Object Oriented Programming & Data Structures Assignment 06 :: 100 pts

Page | 3

encapsulated as
methods in well-
defined objects.

&
All of the things that
the program knows
(or keeps track of)
are encapsulated in
well-defined objects

&
All responsibilities of
each class are
appropriate to that
class.

encapsulated as
methods in well-
defined objects.

&
Most of the things
that the program
knows (or keeps
track of) are
encapsulated in well-
defined objects

&
Most responsibilities
of each class are
appropriate to that
class.

encapsulated as
methods in well-
defined objects.

&
Some of the things
that the program
knows (or keeps
track of) are
encapsulated in well-
defined objects

&
Most responsibilities
of each class are
appropriate to that
class.

encapsulated as
methods in well-
defined objects.

||
Few of the things
that the program
knows (or keeps
track of) are
encapsulated in well-
defined objects

||
Few responsibilities
of each class are
appropriate to that
class.

Leveraging abstract
and/or concrete base
classes and/or
interfaces

Points:
15: Excellent
12: Good
10: Fair
 5: Poor/NA

Program takes
advantage of
inheritance to create
“is a” relationships
that allows the
program to
effectively meet its
responsibilities.

Program
demonstrates
inheritance to create
“is a” relationships
that allows the
program to
effectively meet
some responsibility.

Program
demonstrates
inheritance to create
“is a” relationships
that allow the
program to perform
some useful act.

Program does not
demonstrate
inheritance.

Using UML to
concisely describe
the essential features
of classes

Points:
15: Excellent
12: Good
10: Fair
 5: Poor/NA

Student’s submission
includes a UML class
diagram that neatly
and correctly and
accurately describes
their program.

&
The UML class
diagram includes all
classes, with all
attributes and all
operations.
 &
UML class diagram
includes all visibility
information, all data
type information,
and all argument and
return type
information.

&
UML class diagram
includes notations
indicating the

Student’s submission
includes a UML class
diagram that neatly
and correctly and
accurately describes
their program.

&
The UML class
diagram includes all
classes, with most
attributes and most
operations.

&
UML class diagram
includes most
visibility information,
most data type
information, and
most argument and
return type
information.

&
UML class diagram
includes notations
indicating some

Student’s submission
includes a UML class
diagram that neatly
and reasonably
describes their
program.

&
The UML class
diagram includes
most classes, with
some attributes and
some operations.

&
UML class diagram
includes some
visibility information,
some data type
information, and
some argument and
return type
information.

||
UML class diagram
includes no notations
indicating

Student’s submission
does not include a
UML class diagram
that neatly and
reasonably describes
their program.

||
The UML class
diagram is missing
most classes, or most
attributes or most
operations.

||
UML class diagram is
missing most
visibility information,
data type
information,
argument and return
type information.

CSE205 Object Oriented Programming & Data Structures Assignment 06 :: 100 pts

Page | 4

relationships
between classes

relationships
between classes

relationships
between classes

Choosing or
implementing data
structures that best
meet the needs of a
given problem

Points:
10: Excellent
 8: Good
 6: Fair
 0: Poor/NA

Program takes
advantage of a stack
or queue or linked
list or binary search
tree that allows the
program to
effectively meet its
responsibilities.

Program
demonstrates use of
a stack or queue or
linked list or binary
search tree that
allows the program
to effectively meet
some
responsibilities.

Program
demonstrates use of
a stack or queue or
linked list or binary
search tree that
allows the program
to perform some
useful act.

Program does not
demonstrate use of a
stack or queue or
linked list or binary
search tree that
allows the program
to perform some
useful act.

Leveraging generics
in Java

Points:
10: Excellent
 8: Good
 6: Fair
 0: Poor/NA

Program includes at
least one
programmer defined
class that is generic.
&
Program uses the
generic class to
effectively meet
some
responsibilities.

Program includes at
least one
programmer defined
method that is
generic.
&
Program uses the
generic method to
effectively meet
some
responsibilities.

Program uses at least
one generic class
from the Java
standard library to
effectively meet
some
responsibilities.

Program does not
use any generic
classes or methods to
effectively meet
responsibilities.

Using Big-O notation
to describe the
algorithmic
complexity of an
algorithm that you
are using in your
program

Points:
10: Excellent
 8: Good
 6: Fair
 0: Poor/NA

Student’s submission
includes a document
that uses Big-O
notation for
algorithmic
complexity to
correctly and
accurately describe
at least one key
algorithm used in the
program.

&
The document
includes a
comparison of this
algorithm with at
least one other
algorithm that would
have a different run-
time complexity, but
could still be used to
meet the same
responsibility.

Student’s submission
includes a document
that uses Big-O
notation for
algorithmic
complexity to
correctly and
accurately describe
at least two key
algorithm used in the
program.

Student’s submission
includes a document
that uses Big-O
notation for
algorithmic
complexity to
correctly and
accurately describe
at least one key
algorithm used in the
program.

Student’s submission
does not include a
document that uses
Big-O notation for
algorithmic
complexity to
correctly and
accurately describe
at least one key
algorithm used in the
program.

Writing recursive
algorithms

Program includes at
least two

Program includes at
least one

Program includes at
least one

Program does not
include at least one

CSE205 Object Oriented Programming & Data Structures Assignment 06 :: 100 pts

Page | 5

Points:
10: Excellent
 8: Good
 6: Fair
 0: Poor/NA

programmer defined
recursive algorithms.

&
Program uses both
recursive algorithms
to effectively meet
some
responsibilities.

programmer defined
recursive algorithm.

&
Program uses the
recursive algorithm
to effectively meet
some
responsibilities.

programmer defined
recursive algorithm.

&
Program uses the
recursive algorithm
to perform some
useful act.

programmer defined
recursive algorithm.

Choosing and using
sorting algorithms

Points:
10: Excellent
 8: Good
 6: Fair
 0: Poor/NA

Program includes at
least two
programmer defined
sorting algorithm.

&
Program uses both
sorting algorithms to
effectively meet
some
responsibilities.

Program includes at
least one
programmer defined
sorting algorithms.

&
Program uses both
sorting algorithms to
effectively meet
some
responsibilities.

Program includes at
least one
programmer defined
sorting algorithms.

&
Program uses the
sorting algorithm to
perform some useful
act.

Program does not
include at least one
programmer defined
sorting algorithm.

Code is well
commented

Points:
10: Excellent
 8: Good
 6: Fair
 0: Poor/NA

All files include a
header with the
following
information: <Class
#> / <meeting days
and times>,
<assignment
#>,<authors name> &
<student ID>,
<description: <of the
file contents>

&
All methods include a
header comment
describing the
purpose and use of
the method.

&
All complex code is
commented to
explain why it exists.

All files include a
header with the
following
information: <Class
#> / <meeting days
and times>,
<assignment
#>,<authors name> &
<student ID>,
<description: <of the
file contents>

&
All methods include a
header comment
describing the
purpose and use of
the method.

All files include a
header with the
following
information: <Class
#> / <meeting days
and times>,
<assignment
#>,<authors name> &
<student ID>,
<description: <of the
file contents>

&
Most methods
include a header
comment describing
the purpose and use
of the method.

Some files do not
include a header with
the following
information: <Class
#> / <meeting days
and times>,
<assignment
#>,<authors name> &
<student ID>,
<description: <of the
file contents>

||
Most methods do
not include a header
comment describing
the purpose and use
of the method.

Code is neat,
readable, and well
organized

Points:
10: Excellent
 8: Good
 6: Fair
 0: Poor/NA

All methods are
followed by one
blank line.

&
All nested structures
like methods, loops,
and decisions are
consistently
indented.

&
All operators (+, -, *,
/, %, &&, ||, >, < , >=,

All methods are
followed by one
blank line.

&
All nested structures
like methods, loops,
and decisions are
consistently
indented.

&
All operators (+, -, *,
/, %, &&, ||, >, < , >=,

Most methods are
followed by one
blank line.

&
All nested structures
like methods, loops,
and decisions are
consistently
indented.

&
Most operators (+, -,
*, /, %, &&, ||, >, < ,

Most methods are
not followed by one
blank line.

||
Some nested
structures like
methods, loops, and
decisions are
inconsistently
indented.

||

CSE205 Object Oriented Programming & Data Structures Assignment 06 :: 100 pts

Page | 6

<=, ==, !=) are
preceded and
followed by a single
space.

&
All names for classes,
methods, variables,
etc. are descriptive
and appropriate.

<=, ==, !=) are
preceded and
followed by a single
space.

&
Most names for
classes, methods,
variables, etc. are
descriptive and
appropriate.

>=, <=, ==, !=) are
preceded and
followed by a single
space.

&
Most names for
classes, methods,
variables, etc. are
descriptive and
appropriate.

No operators (+, -, *,
/, %, &&, ||, >, < , >=,
<=, ==, !=) are
preceded and
followed by a single
space.

||
Most names for
classes, methods,
variables, etc. are not
descriptive and
appropriate.

Code compiles and
runs correctly

Points:
10: Excellent
 8: Good
 6: Fair
 0: Poor/NA

All code compiles
and runs correctly

&
No fatal errors occur
while the program is
running.

&
All runtime behavior
is consistent with the
responsibilities of the
program

All code compiles
and runs correctly

&
Some fatal errors
occur while the
program is running.

&
All runtime behavior
is consistent with the
responsibilities of the
program

All code compiles.
But
Some fatal errors
occur while the
program is running.

||
Some runtime
behavior is
inconsistent with the
responsibilities of the
program

Some code does not
compile.

Assignment Examples and Ideas
Here are a few basic examples or ideas for projects that you can do to meet the assignment requirements.

1. Menu driven grade calculator that calculates a total grade based on the weighted average of a number of
components like quizzes, exams, assignments, and projects. This program should also product a user-friendly on-
scree report that summarizes the grade data.

2. Turtle Graphics program that allows the user to enter a sequence of turtle command like MOVE, TURN RIGHT,
TURN LEFT, PEN UP, PEN DOWN, etc. The program will “run” the user’s turtle commands and then output to the
screen the result as a text-based drawing.

3. Game of Craps.
4. Tic-Tac-Toe game against the computer.
5. Appointment manager application allowing the user set, look-up, delete, and edit appointments.
6. Poker hand analyzer. Given 5 random cards from a standard deck of 52 cards, determine all poker hands that

can be made from these 5 cards, and determine the best hand that can be made. This may be extended to
simulate a poker game.

7. …

