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Abstract

In this paper, we compare several detection algorithms that
are based on spectral matched (subspace) filters. Nonlin-
ear (kernel) versions of these spectral matched (subspace)
detectors are also discussed and their performance is com-
pared with the linear versions. These kernel-based detec-
tors exploit the nonlinear correlations between the spec-
tral bands that are ignored by the conventional detectors.
Several well-known matched detectors, such as matched
subspace detector, orthogonal subspace detector, spectral
matched filter and adaptive subspace detector (adaptive co-
sine estimator) are extended to their corresponding kernel
versions by using the idea of kernel-based learning theory.
In kernel-based detection algorithms the data is implicitly
mapped into a high dimensional kernel feature space by a
nonlinear mapping which is associated with a kernel func-
tion. The detection algorithm is then derived in the feature
space which is kernelized in terms of the kernel functions in
order to avoid explicit computation in the high dimensional
feature space. Experimental results based on simulated toy-
examples and real hyperspectral imagery show that the ker-
nel versions of these detectors outperform the conventional
linear detectors.

1 Introduction

Detecting signals of interest, particularly with wide signal
variability, in noisy environments has long been a challeng-
ing issue in various fields of signal processing. Among a
number of previously developed detectors, the well-known
matched subspace detector (MSD) [1], orthogonal subspace
detector (OSD) [1, 2], spectral matched filter (SMF) [3, 4],
and adaptive subspace detectors (ASD) also known as adap-
tive cosine estimator (ACE) [5, 6] have been widely used to
detect a desired signal (target).

Matched signal detectors, such as spectral matched fil-
ter and matched subspace detectors (whether adaptive or
non-adaptive), only exploit second order correlations, thus
completely ignoring nonlinear (higher order) spectral inter-
band correlations that could be crucial to discriminate be-
tween target and background. In this paper, our aim is to
introduce nonlinear versions of MSD, OSD, SMF and ASD

detectors which effectively exploits the higher order spec-
tral inter-band correlations in a high (possibly infinite) di-
mensional feature space associated with a certain nonlinear
mapping via kernel-based learning methods [7]. A nonlin-
ear mapping of the input data into a high dimensional fea-
ture space is often expected to increase the data separability
and reduce the complexity of the corresponding data struc-
ture. The nonlinear versions of a number of signal process-
ing techniques such as principal component analysis (PCA)
[8], Fisher discriminant analysis [9], linear classifiers [10],
and kernel-based anomaly detection [11] have already been
defined in a kernel space.

This paper is organized as follows. Section 2 provides
the background to the kernel-based learning methods and
kernel trick. Section 3 introduces a linear matched subspace
and its kernel version. The orthogonal subspace detector is
defined in Section 4 as well as its kernel version. In Section
5 we describe the conventional spectral matched filter ad its
kernel version in the feature space and reformulate the the
expression in terms of the kernel function using the kernel
trick. Finally, in Section 6 the adaptive subspace detector
and its kernel version are introduced. Performance com-
parison between the conventional and the kernel versions of
these algorithms is provided in Section 7 and conclusions
are given in Section 8.

2 Kernel-based Learning and Kernel
Trick

Suppose that the input hyperspectral data is represented by
the data space (

� � � �
) and � is a feature space associated

with
�

by a nonlinear mapping function �

� � � � � � 	 
� � � 	 � � (1)

where 	 is an input vector in
�

which is mapped into a
potentially much higher – (could be infinite) – dimensional
feature space. Due to the high dimensionality of the feature
space � , it is computationally not feasible to implement any
algorithm directly in feature space. However, kernel-based
learning algorithms use an effective kernel trick given by
Eq. (2) to implement dot products in feature space by em-
ploying kernel functions [7]. The idea in kernel-based tech-
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niques is to obtain a nonlinear version of an algorithm de-
fined in the input space by implicitly redefining it in the
feature space and then converting it in terms of dot prod-
ucts. The kernel trick is then used to implicitly compute the
dot products in � without mapping the input vectors into� ; therefore, in the kernel methods, the mapping � does
not need to be identified.

The kernel representation for the dot products in � is
expressed as � � � � � � � � 	 � � � � � 
 � � � � � � (2)

where
�

is a kernel function in terms of the original data.
There are a large number of Mercer kernels that have the
kernel trick property, see [7] for detailed information about
the properties of different kernels and kernel-based learn-
ing. Our choice of kernel in this paper is the Gaussian RBF
kernel and the associated nonlinear function � with this ker-
nel generates a feature space of infinite dimensionality.

3 Linear MSD and Kernel MSD

3.1 Linear MSD
In this model the target pixel vectors are expressed as a lin-
ear combination of target spectral signature and background
spectral signature, which are represented by subspace target
spectra and subspace background spectra, respectively. The
hyperspectral target detection problem in a � -dimensional
input space is expressed as two competing hypotheses � 

and � �

� � � � 	 � � � � � (3)

� � � � 	 � � � � � � � 	 � � � � � � � � � � �
where � and � represent orthogonal matrices whose � -
dimensional column vectors span the target and background
subspaces, respectively; � and � are unknown vectors whose
entries are coefficients that account for the abundances of
the corresponding column vectors of � and � , respectively;� represents Gaussian random noise ( � � � �

) distributed
as  � ! � " # $ � ; and � � � � is a concatenated matrix of� and � . The numbers of the column vectors of � and� , % & and % ' , respectively, are usually smaller than �
( % & � % ' ( � ).

The generalized likelihood ratio test (GLRT) for the
model (3) was derived in [1], given as) # � � � 	 � * � $ + , - � �� * � $ + , . - � � / 01

/ 2 3
(4)

where , - 	 � � � * � � 4 � � * 	 � � * is a projection ma-
trix associated with the % ' -dimensional background sub-
space ( � 5 ; , . - is a projection matrix associated with

the ( % ' & 	 % ' � % & )-dimensional target-and-background
subspace ( � � 5

, . - 	 � � � � � 6 � � 7 * 6 � � 7 � 4 � � � � � * 8 (5)

3.2 Linear MSD in the Feature Space and its
Kernel Version

The hyperspectral detection problem based on the target and
background subspaces can be described in the feature space� as

� � 9 � � � � � 	 � : � : � � : � (6)� � 9 � � � � � 	 � : � : � � : � : � � :
	 � � : � : � � � :� : � � � : �

where � : and � : represent full-rank matrices whose
column vectors span target and background subspaces (� : 5 and ( � : 5 in � , respectively; � : and � : are un-
known vectors whose entries are coefficients that account
for the abundances of the corresponding column vectors of� : and � : , respectively; � : represents Gaussian random
noise; and � � : � : � is a concatenated matrix of � :
and � : . Using a similar reasoning as described in the pre-
vious subsection, the GLRT of the hyperspectral detection
problem depicted by the model in (6) is given by

) # � � � � � � 	 � � � � * � , ; 9 + , - 9 � � � � �� � � � * � , ; 9 + , . 9 - 9 � � � � � � (7)

where , ; 9 represents an identity projection operator in � ;, - 9 	 � : � � *: � : � 4 � � *: 	 � : � *: is a background pro-
jection matrix; and , . 9 - 9 is a joint target-and-background
projection matrix in �

, . 9 - 9 	 � � : � : � � 6 � : � : 7 * 6 � : � : 7 � 4 � <
(8)� � : � : � *

	 � � : � : � � � *: � : � * : � :� *: � : � *: � : � 4 � � � * :� *: � 8
To kernelize (7) we will separately kernelize the numer-

ator and the denominator. First consider its numerator,

� � � � * � , ; 9 + , - 9 � � � � � 	 � � � � * , ; 9 � � � � + (9)� � � � * � : � *: � � � � 8
Each column of � : and � : can be written in terms of its
corresponding data space [7] as

� : 	 � = > � = > # 8 8 8 = ? @> � 	 � A B C � (10)

� : 	 � = D � = D # 8 8 8 = ? ED � 	 � A F G � (11)
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where � �� and � � � are the significant eigenvec-
tors of the target and background covariance
metrics � � � and � � � , respectively; 	 
 � �
 	 � � � � 	 � � � � � � � 	 � � � � � � � � � � � and	 
 � � 
 	 � � � � 	 � � � � � � � 	 � � � � � �� � � � � ; the column vectors of � and � represent
only the significant normalized eigenvectors ( � � , � � ,
. . . , � � � ) and ( � � , � � , . . . , � �  ) of the background
centered kernel matrix ! � � � � � � � = � ! � � � � " � � � � � � � �� � � � � � � � and the target centered kernel matrix! � � � � � � � = � ! � � � � " � � � � � � � � � � � � � � � � , respec-
tively. Using (10) the projection of 	 � � � onto # $ becomes# %$ 	 � � � � � % ! � � � � � � and, similarly, using (11) the
projection onto & $ is & %$ 	 � � � � � % ! � � � � � � where! � � � � � � and ! � � � � � � , referred to as the empirical
kernel maps in the machine learning literature [7], are
column vectors whose entries are

" � ' � � � � for ' � � � � and' � � � � , respectively. Now we can write

	 � � � % # $ # %$ 	 � � � � ! � � � � � � % � � % ! � � � � � � � (12)

The projection onto the identity operator 	 � � � % ( ) � 	 � � �
also needs to be kernelized which is given by

	 � � � % ( ) � 	 � � � � 	 � � � % 	 
 � � * * % 	 % 
 � � 	 � � � (13)

� ! � � � � � � � % * * % ! � � � � � � � �
where 	 
 � � � 	 
 � + 	 
 � and * is a matrix
whose columns are the eigenvectors ( , � , , � , . . . , , � �  )
of the centered kernel matrix ! � � � � � � � � � = � ! � � �
=

" � � � � � � � � � � � � � � � � + � � with nonzero eigen-
values, normalized by the square root of their associ-
ated eigenvalues and ! � � � � � � � is a concatenated vector
 ! � � � � � � % ! � � � � � � % � % . To complete the kernel-
ization process the denominator of (7) is given by

	 � � � % ( � � � � 	 � � � � 	 � � � % 
 & $ # $ � -
(14)

. & %$ & $ & % $ # $# %$ & $ # % $ # $ / 0 � . & % $# % $ / 	 � � �
� 
 ! � � � � � � % � ! � � � � � � % � � -

. � % ! � � � � � � � � � % ! � � � � � � � �� % ! � � � � � � � � � % ! � � � � � � � � / 0 � -
. � % ! � � � � � �� % ! � � � � � � / �

Finally, substituting (12), (14), and (14) into (7) the kernel-

ized GLRT is given by

1 � 2 � � ! � � � � � � � % * * % ! � � � � � � � 3 (15)

! � � � � � � % � � % ! � � � � � � � 4
� ! � � � � � � � % * * % ! � � � � � � � 3


 ! � � � � � � % � ! � � � � � � % � � 5 0 �� -
. � % ! � � � � � �� % ! � � � � � � / � �

where 5 � � . � % ! � � � � � � � � � % ! � � � � � � � �� % ! � � � � � � � � � % ! � � � � � � � � / �
In the above derivation (15) we assumed that the mapped

input data was centered in the feature space by removing
the sample mean. However, the original data is usually not
centered and the estimated mean in the feature space can not
be explicitly computed, therefore, the kernel matrices have
to be properly centered. The resulting centered 6! is shown
in [7] to be given by

6! � � ! 3 7 � ! 3 ! 7 � 8 7 � ! 7 � � � (16)

where the 9 - 9 matrix � 7 � � � � � : 4 9 . The empirical
kernel maps ! � � � � � � , ! � � � � � � , and ! � � � � � � � have
also to be centered by removing their corresponding em-
pirical kernel map mean. (e.g. ;! � � � � � � � ! � � � � � � 3�� < �� = � " � � � � � � � � � � � � .)

4 OSP and Kernel OSP Algorithms

4.1 Linear spectral mixture model
The OSP algorithm [2] is based on maximizing the SNR
(signal-to-noise ratio) in the subspace orthogonal to the
background subspace and only depends on the noise
second-order statistics. It also does not provide any esti-
mate of the abundance measure for the desired end member
in the mixed pixel. A linear mixture model for pixel � con-
sisting of > spectral bands is described by

� � ? @ 8 A � (17)

where the � > - B � matrix ? represent
B

endmembers spec-
tra, @ is a � B - : � column vector whose elements are the co-
efficients that account for the proportions (abundances) of
each endmember spectrum contributing to the mixed pixel,
and A is an � > - : � vector representing an additive zero-
mean Gaussian noise with covariance matrix C � D and D is
the � > - > � identity matrix.

Assuming now we want to identify one particular signa-
ture (e.g. a military target) with a given spectral signatureE

and a corresponding abundance measure @ F , we can rep-
resent ? and @ in partition form as ? � � G H E � and
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� � � �� � � then model (17) can be rewritten as

� � � � � � 	 � � 
 � (18)

where the columns of 	 represent the undesired spectral
signatures (background signatures or eigenvectors) and the
column vector � is the abundance measures for the unde-
sired spectral signatures. The OSP operator that maximizes
the signal to noise ratio is given by� 
� � � � � 
 � � � 	 	 # � (19)

which consists of a background signature rejecter followed
by a matched filter. The output of the OSP classifier is now
given by � � � � � � 
� � � � � � 
 � � � 	 	 # � � � (20)

4.2 OSP in feature space and its kernel ver-
sion

The mixture model in the high dimensional feature space �
is given by � � � � � � � � � 
 � � (21)

where � � is a matrix whose columns are the endmembers
spectra in the feature space and 
 � is an additive zero-mean
Gaussian noise with covariance matrix � � � � and � � is the
identity matrix in the feature space. The model (21) can
also be rewritten as� � � � � � � � � � � � 	 � � � 
 � � (22)

where � � � � represent the spectral signature of the desired
target in the feature space and the columns of 	 � represent
the undesired background signatures in the feature space.

The output of the OSP classifier in the feature space is
given by� � � � � � � 
� � � � � � � � � � 
 � � � � 	 � 	 #� � � � � � � (23)

This output (23) is very similar to the numerator of (7). It
can easily be shown that the kernelized version of (23) is
given by�  � � � � ! � " # $ � � � 
 % % 
 ! � " # $ � � � � (24)! � " # � � � 
 & & 
 ! � " # � � �
where " # � ' ( ) ( � � � � ( * + correspond to , input back-
ground spectral signatures and & � � - ) � - � � � � � � - * . � 

are the , / significant eigenvectors of the centered ker-
nel matrix (Gram matrix) ! � " # � " # � normalized by
the square root of their corresponding eigenvalues [8].

! � " # � � � and ! � " # � � � , are column vectors whose en-
tries are

0 � ( 1 � � � and
0 � ( 1 � � � for ( 1 2 " # , respectively." # $ � " # 3 �

and % is a matrix whose columns are the , / $
eigenvectors ( 4 ) , 4 � , . . . , 4 * . 5 ) of the centered kernel ma-
trix ! � " # $ � " # $ � = � ! � 1 6 =

0 � ( 1 � ( 6 � � ( 1 � ( 6 2 " # $ with
nonzero eigenvalues, normalized by the square root of their
associated eigenvalues. Also ! � " # $ � � � is the concate-
nated vector 7 ! � " # � � � 
 ! � � � � � 
 8 
 and ! � " # $ � � �
is the concatenated vector 7 ! � " # � � � 
 ! � � � � � 
 8 
 .
In the above derivation (24) we assumed that the mapped
input data was centered in the feature space. The kernel
matrices and the empirical kernel maps have to be properly
centered as was shown in subsection 3.2

5 Linear SMF and Kernel Spectral
Matched Filter

5.1 Linear Spectral Matched Filter
In this section, we introduce the concept of linear SMF.
The constrained least squares approach is used to derive
the linear SMF. Let the input spectral signal ( be ( �' 9 � : � � 9 � ; � � � � � � 9 � < � + 
 consisting of < spectral bands. We
can model each spectral observation as a linear combination
of the target spectral signature and noise( � = > � 
 � (25)

where = is an attenuation constant (target abundance mea-
sure). When = � ? no target is present and when = @ ? tar-
get is present, vector > � ' A � : � � A � ; � � � � � � A � < � + 
 contains
the spectral signature of the target and vector 
 contains the
added background clutter noise.

Let us define B to be a < C , matrix of the , mean-
removed background reference pixels (centered) obtained
from the input image. Let each centered observation spec-
tral pixel to be represented as a column in the sample matrixB B � ' ( ) ( � � � � ( * + � (26)

We can design a linear matched filter such that the desired
target signal > is passed through while the average filter out-
put energy is minimized. The solution to this minimization
problem was shown in [12] and was called Constrained En-
ergy Minimization (CEM) filter. The output of the linear
matched filter for a test input � , given the estimated covari-
ance matrix is given byD E � F 
 � � > 
 GH I ) �> 
 GH I ) > (27)

where GH is the estimated covariance matrix. In [4, 5] it
was shown that using the GLRT the same expression for the
linear matched filter (27) can be obtained.
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5.2 SMF in Feature Space and its Kernel Ver-
sion

Consider the linear model of the input data in a kernel fea-
ture space which is equivalent to a non-linear model in the
input space � � � � � � � � � � � � 	 
 � (28)

where � is the non-linear mapping that maps the input data
into a kernel feature space, � 
 is an attenuation constant
(abundance measure), the high dimensional vector � � � �
contains the spectral signature of the target in the feature
space, and vector 	 
 contains the added noise in the feature
space.

Using the constrained least squares approach it can eas-
ily be shown that the output of the desired matched filter for
the input � � � � is given by
 � � � � � � � � � � �� � �
 � � � �� � � � � �� � �
 � � � � (29)

where �� 
 is the estimated covariance of pixels in the fea-
ture space.

We now show how to kernelize the matched filter ex-
pression (29) where the resulting non-linear matched filter
is called the kernel matched filter. The pseudoinverse (in-
verse) of the estimated background covariance matrix can
be written in terms of its eigenvector decomposition as [10]�� �
 � � 
 � � � � � � � �
 (30)

where � 
 = � � � � � � � � � � � � � � � � � � � � is a matrix whose
columns are the mapped background reference data in the
feature space and � � �  �  � � � �  � ! � are the nonzero
eigenvectors of the centered kernel matrix (Gram matrix)" � � � � � normalized by the square root of their corre-
sponding eigenvalues.

Inserting Equation (30) into (29) it can be rewritten as
 � � � � � � � � � � � 
 � � � � � � � �
 � � � �� � � � � � 
 � � � � � � � �
 � � � � � (31)

Also using the properties of the Kernel PCA [7], we have
the relationship " � � � � � � � � . We denote " �" � � � � � � � " � # $ an % & % Gram kernel matrix whose
entries are the dot products ' � � � # � � � � � $ � ( . Finally, the
kernelized version of SMF is now given by
 ) � � " � � � � � � " � � " � � � � �" � � � � � � " � � " � � � � � � " �* " � � " +" �* " � � " * (32)

where the empirical kernel maps " * � " � � � � � and " + �" � � � � � . As in the previous section the kernel matrix "
as well as the empirical kernel maps need to be properly
centered.

6 Adaptive Subspace Detector and
Kernel Adaptive Subspace Detec-
tor

6.1 Linear ASD
In this section, the GLRT under the two competing hypothe-
ses ( , - and , � ) for a certain mixture model is described.
The subpixel detection model for a measurement � (a pixel
vector) is expressed as, - . � � 	 � Target absent (33), � . � � / 0 � 1 	 � Target present

where / represents an orthogonal matrix whose column
vectors are the eigenvectors that span the target subspace' / ( ; 0 is an unknown vector whose entries are coeffi-
cients that account for the abundances of the corresponding
column vectors of / ; 	 represents Gaussian random noise
distributed as 2 � 3 � � � .

In the model, � is assumed to be a background noise un-
der , - and a linear combination of a target subspace signal
and a scaled background noise, distributed as 2 � / 0 � 1 � � � ,
under , � . The background noise under the two hypothe-
ses is represented by the same covariance but different vari-
ances because of the existence of subpixel targets under , � .
The GLRT for the subpixel problem as described in [5] (so
called ASD) is given by4 5 6 7 � � � � � � �� � � / � / � �� � � / � � � / � �� � � �� � �� � � � 8 9:

8 ; <
5 6 7 �
(34)

where �� is the MLE (maximum likelihood estimate) of the
covariance � and <

5 6 7 represents a threshold. Expression
(34) has a constant false alarm rate (CFAR) property and
is also referred to as the adaptive cosine estimator because
(34) measures the angle between =� and ' =/ ( where =� ��� � � > � � and =/ � �� � � > � / .

6.2 ASD in the Feature Space and its Kernel
Version

We define a new subpixel model by assuming that the input
data has been implicitly mapped by a nonlinear function �
into a high dimensional feature space ? . The model in ? is
then given by, - � . � � � � � 	 
 � Target absent (35), � � . � � � � � / 
 0 
 � 1 
 	 
 � Target present

where / 
 represents a full-rank matrix whose @ � col-
umn vectors are the eigenvectors that span target subspace

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) 

1063-6919/05 $20.00 © 2005 IEEE 

aliab
Highlight



� � � � in � ; � � is unknown vectors whose entries are
coefficients that account for the abundances of the corre-
sponding column vectors of � � ; � � represents Gaussian
random noise distributed by � � 	 
 � � � ; and 
 � is the noise
variance under � � � . The GLRT for the model (35) in � is
now given by�

� � � � � � � � � � � � �� � �� � � � � � � �� � �� � � � � � � � � �� � �� � � � �� � � � � �� � �� � � � � 

(36)

where �� � is the MLE of � � .
The kernelized expression of (36) is given by� � �

� � � � � � (37)� � � � � � �  
 ! � � � �  
  � � � � �  
 ! � � " � � � ��# � � 
  � � � �  
  � � � # � � 
  �
where � � � # � � 
  � � � �  
  � � � � �  
 ! � � 

background spectral signatures is denoted by � � � � � $ % % % � & " , target spectral signa-
tures are denoted by ! � � ' � ' $ % % % ' ( " and� � � ) � ) $ % % % ) ( * " 
 + � � + 
 is a matrix consisting
of the + � eigenvectors of the kernel matrix � � ! 
 ! � . As
in the previous section, all the kernel matrices as well as
the empirical kernel maps need to be properly centered [7].

7 Experimental Results
In this section, the kernel-based matched signal detectors,
such as the kernel MSD (KMSD), kernel ASD (KASD),
kernel OSP (KOSP) and kernel SMF (KSMF) as well as
the corresponding conventional detectors are implemented
based on two different types of data sets – illustrative
toy data sets and a real hyperspectral image that contains
military targets. The Gaussian RBF kernel,

, � � 
 ' � �
exp � � - � � . - /0 � 
 was used to implement the kernel-based de-
tectors. � represents the width of the Gaussian distribution
and the value of c was chosen such that the overall data vari-
ations can be fully exploited by the Gaussian RBF function.
In this paper, the values of � were determined experimen-
tally.

A. Illustrative Toy Examples
Figs 1 and 2 show contour and surface plots of the con-
ventional detectors and the kernel-based detectors, on two
different types of two-dimensional toy data sets: a Gaus-
sian mixture in Fig. 1 and nonlinearly mapped data in Fig.
2. In the contour and surface plots, data points for the
desired target were represented by the star-shaped symbol
and the background points were represented by the circles.

In Fig. 2 the two-dimensional data points � � � 1 
 2 � for
each class were obtained by nonlinearly mapping the orig-
inal Gaussian mixture data points � 3 � � 1 4 
 2 4 � in Fig. 1.
All the data points in Fig. 2 were nonlinearly mapped by� � � 1 
 2 � � � 1 4 
 1 $4 5 2 4 � . In the new data set the second
component of each data point is nonlinearly related to its
first component.

For both data sets, the contours generated by the kernel-
based detectors are highly nonlinear and naturally following
the dispersion of the data and thus successfully separating
the two classes, as opposed to the linear contours obtained
by the conventional detectors. Therefore, the kernel-based
detectors clearly provided significantly improved discrimi-
nation over the conventional detectors for both the Gaussian
mixture and nonlinearly mapped data. Among the kernel-
based detectors, KMSD and KASD outperform KOSP and
KSMF mainly because targets in KMSD and KASD are bet-
ter represented by the associated target subspace than by a
single spectral signature used in KOSP and KSMF. Note
that the contour plots for MSD (Fig. 1(a) and Fig. 2 (a))
represent only the numerator of Eq. 4 because the denomi-
nator becomes unstable for the two-dimensional cases: i.e.,
for the two-dimensional data � 6 7 8 9 : � becomes zero.

B. Hyperspectral Images

In this section, a HYDICE (HYperspectral Digital Imagery
Collection Experiment) image from the Desert Radiance II
data collection (DR-II) was used to compare detection per-
formance between the kernel-based and conventional meth-
ods. The HYDICE imaging sensor generates 210 bands
across the whole spectral range (0.4 – 2.5 � � ) which in-
cludes the visible and short-wave infrared (SWIR) bands.
But we only use 150 bands by discarding water absorp-
tion and low signal to noise ratio (SNR) bands; the spectral
bands used are the 23rd–101st, 109th–136th, and 152nd–
194th for the HYDICE images. The DR-II image includes 6
military targets along the road, as shown in the sample band
images in Fig. 3. The detection performance of the DR-
II image was provided in both the qualitative and quantita-
tive – the receiver operating characteristics (ROC) curves –
forms. The spectral signatures of the desired target and un-
desired background signatures were directly collected from
the given hyperspectral data to implement both the kernel-
based and conventional detectors.

Figs. 4-5 show the detection results including the ROC
curves generated by applying the kernel-based and conven-
tional detectors to the DR-II image. In general, the detected
targets by the kernel-based detectors are much more evi-
dent than the ones detected by the conventional detectors,
as shown in Fig. 4. Fig. 5 shows the ROC curve plots
for the kernel-based and conventional detectors; the kernel-
based detectors clearly outperformed the conventional de-
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tectors. In particular, KMSD performed the best of all the 
kernel-based detectors detecting all the targets and signif- 
icantly suppressing the background. The performance su- 
periority of KMSD is mainly attributed to the utilization of 
both the target and background kernel subspaces represent- 
ing the target and background signals in the feature space, 
respectively. 

8 Conclusions 
In this paper, nonlinear versions of several matched signal 
detectors, such as KMSD, KOSP, KSMF and KASD have 
been implemented using the kernel-based learning theory. 
Performance comparison between the matched signal de- 
tectors and their corresponding nonlinear versions was con- 
ducted based on two-dimensional toy-examples as well as a 
real hyperspectral image. It is shown that the kernel-based 
nonlinear versions of these detectors outperform the linear 
versions. If enough target spectral samples are available to 
build a target subspace the kernel matched subspace detec- 
tors (KMSD and KASD) generally provide improved detec- 
tion performance over KOSP and KSMF. If the target sub- 
space cannot be properly estimated because only a small 
number of target samples are available KOSP or KSMF can 
be used instead which uses a single spectral signature as a 
reference to a target of interest. 
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Figure 1: Contour and surface plots of the conventional 
matched signal detectors and their corresponding kernel 
versions on a toy dataset (a mixture of Gaussian). 
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Figure 4: Detection results for the DR-I1 image using the 
conventional detectors and the corresponding kernel ver- 
sions. 

(g>SMF (h) KSMF 

Figure 2:  Contour and surface plots of the conventional 
matched signal detectors and their corresponding kernel 
versions on a toy dataset: in this toy example, the Gaus- 
sian mixture data shown in Fig. 1 was modified to generate 
nonlinearly mixed data. 
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Figure 3: A sample band image from the DR-I1 data 

Figure 5: ROC curves obtained by conventional detectors 
and the corresponding kernel versions for the DR-I1 image. 
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